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ABSTRACT

The development of the micro-powder injection molding (µPIM) process from the powder injection molding 
(PIM) process has been prompted by the demand of the worldwide market to produce micro-sized components. The 
need for µPIM-processed components is currently rising across a range of industries, including automotive, 
aerospace, food, biomedical, electronics, and telecommunications. In the current research work, homogeneous 
HA feedstock with a powder loading of 57 vol.% was prepared by mixing HA powder particles with palm stearin and 
low-density polyethylene (LDPE) binders at a mixing temperature of 150 °C for 6 h. Defect-free injection molded or 
green micro-sized components of HA were produced by employing injection pressure, injection time, mold temperature, 
and melt temperature of 12 bar, 5 s, 110 °C, and 180 °C, respectively. When mold temperatures less than 110 °C 
were used, short shot defects were frequently observed in green specimens. After solvent debinding at 60 °C for 50 
min, 82.2% of the palm stearin was removed from the green part. No difference in dimension between the solvent 
debound part and the green part was noticed. An open-pore structure developed in the solvent debound HA micro-
component is helpful for eliminating the insoluble LDPE binder during the thermal debinding phase.
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INTRODUCTION

Powder injection molding (PIM) is a popular fabrication 
technology and a cost-effective way for generating 
complex, near net form macro-parts in powder metallurgy 
(Aslam et al. 2016; Basir et al. 2023; Basir et al. 2021a; 
Crozier-Bioud et al. 2023; Li et al. 2022; Liu et al. 2023a; 
Shu et al. 2022; Tafti et al. 2023). PIM technology is used 
in a variety of industries, including electronics, biomedical, 
aerospace, defense, and automotive engineering (Basir et 
al. 2021b; Dehghan-Manshadi et al. 2018; Liu et al. 2023b; 
Martínková et al. 2022). PIM has a number of benefits, 
such as numerous material alternatives, little waste, and 
great performance (Aslam et al. 2016, Dehghan-Manshadi 
et al. 2018, Liu et al. 2023a). The current preference of 
global market for the production of micro-parts for using 
in various technical applications has sped up the 

development of micro-powder injection molding (µPIM) 
from PIM (Attia et al. 2014; Basir et al. 2022a; Basir et al. 
2022b; Liu et al. 2018; Wang et al. 2014). The µPIM 
method is used to produce micro-parts, which have an 
extrinsic dimension of only a few millimeters, as opposed 
to the macro-parts, which have an average size of close to 
a few centimeters (Meng et al. 2011). Similar to PIM, using 
the µPIM technique makes it feasible to fabricate metal 
and ceramic-based micro-parts in an economical manner. 
In recent years, the electronics, biomedical, and automotive 
industries have seen an increase in demand for µPIM-
processed micro-parts due to their high performance and 
cost-effectiveness (Attia et al. 2014; Bitar et al. 2012; 
Fayyaz et al. 2014; Foudzi et al. 2013; Piotter et al. 2011; 
Fu et al. 2004). Mixing, injection molding, debinding, and 
sintering are the four fundamental steps in the fabrication 
of micro components using µPIM. A homogenized 
feedstock is produced through the mix of a fine powder 
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with an organic binder. The next step is to inject the 
feedstock into a small cavity of mold to generate the green 
micro-part, which takes on the appropriate shape. Using 
the proper method, the debinding procedure removes the 
binder from the molded part. In order to produce high 
density components along with desired mechanical 
properties, the debound micro-sized component is finally 
sintered (Attia & Alcock 2012; Foudzi et al. 2013; Jung et 
al. 2015; Meng et al. 2010; Park et. al. 2018; Tay et al. 
2009; Wang et al. 2022).

Modern materials science and engineering are facing 
significant challenges with the development of sophisticated 
materials for biomedical applications, particularly when it 
comes to the development of materials that can be 
employed in vivo. Due to its ability to form a strong, 
reliable association with bone tissue, hydroxyapatite (HA) 
has shown to be the best bone substitute. Additionally, it 
can exhibit osteoconductive behavior and has no negative 
impacts on human body (Aziz et al. 2015; Arifin et al. 2014; 
Alshammari et al. 2023; Hussin et al. 2022; Orlovskii et 
al. 2002; Siddiqui et al. 2018, Tan et al. 2013). Overall, 
HA is renowned for its exceptional biocompatibility and 

corrosion resistance. Micro-sized HA components are 
increasingly in demand on the global market for usage in 
various biomedical applications. Therefore, in this study, 
the moldability and solvent debinding behavior of HA 
micro-sized components fabricated through the µPIM 
technique was investigated.

EXPERIMENTAL PROCEDURES

In this study, the raw material used was HA powder from 
Vistec Technology Services, Malaysia, with mean particle 
size of 1.7 μm. The pycnometer density of HA was 2.4831 
g/cm3. The field emission scanning electron microscope 
(FESEM, Zeiss Merlin Compact) was used to inspect the 
morphology of HA powder and is displayed in Figure 1. 
In this investigation, the binder system was made up of 60 
wt.% of palm stearin and 40 wt.% of low-density 
polyethylene (LDPE). Palm stearin and LDPE, which were 
supplied by Sime Darby Kempas Sdn. Bhd. and Polyolefin 
Company (Singapore) Pte Ltd., respectively, had densities 
of 0.891 and 0.91 g/cm3, respectively.

FIGURE 1. Morphology of HA powder

FIGURE 2. Schematic of HA micro-part (All the dimensions are in mm)
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A W50 EHT Brabender mixer was used to fabricate 
the HA feedstock, with 57 vol.% of the HA being mixed 
with palm stearin and LDPE binders while upholding the 
temperature of mixing, time, and rotational speed of 150 
°C, 6 h, and 25 rpm, respectively. Using the proper injection 
molding parameters, HA micro-parts were produced on a 
DSM Xplore injection molding machine. The schematic 
of HA micro-sized component is depicted in Figure 2.

Solvent debinding was accomplished using an MMM 
VentiCell 111 oven. The palm stearin binder was taken out 
of the HA green micro-parts by immersing them in acetone 
for 50 min at 60 °C.  

RESULTS AND DISCUSSION

The µPIM process begins with mixing of powder and 
binder. The temperature and duration of the mixing process, 
the amount of powder added, the size of the powder, the 
sequence in which the ingredients are added, and the shear 
rate are all factors that affect the quality of the feedstock 
(Supati et al. 2000). Usually, the later phases of the process 
are unable to compensate for any flaws in the quality of 
the feedstock. An effective dispersion of the HA powder 
particles within the palm stearin and LDPE binders was 
achieved in this study with the use of a twin-screw-blade 
mixer during the mixing procedure. Figure 3 depicts the 
mixing curve of HA feedstock with powder loading of 57 
vol.%. In this context, it is pertinent to mention that Salleh 
et al. (2017) prepared HA feedstocks with a range of 
powder loadings between 54 and 56 vol.% during their 
PIM experiment. The use of a mixer that correlated the 
measurement of the mixing torque with time allowed for 
the evaluation of the homogeneity of the HA feedstock. 
Based on Figure 3, the homogeneity of the feedstock was 
established by the steady value that was reached following 
an initial increase in the mixing torque throughout time. 
The existence of agglomerated clusters in the HA powder 
particles may have contributed to the initial rise in torque 
(Basir et al. 2021a). The preparation of homogeneous 
feedstock is favored in any µPIM process. In addition to 
increasing the likelihood that a component may develop 
faults, inhomogeneous feedstock also has a detrimental 
impact on the mechanical properties of the component 
(Supati et al. 2000; Basir et al. 2021a). The FESEM image 
of the fabricated HA feedstock is displayed in Figure 4. 
Based on Figure 4, HA powder particles were adequately 
coated with binders.

FIGURE 3. Mixing curve of HA feedstock 

FIGURE 4. FESEM image of HA feedstock

In order to determine the proper injection molding 
parameters, micro-injection molding trials using HA 
feedstock were conducted. The injection molding settings 
utilized for producing HA micro-parts with no defects are 
displayed in Table 1. Micro-samples frequently had short 
shot defects when mold temperatures less than 110 °C were 
employed. An injection pressure higher than 12 bar was 
not employed during this study to prevent flash defects in 
the samples. Figure 5 depicts the green HA micro-part 
produced based on µPIM technique. The FESEM image 
of the fabricated HA micro-specimen in shown in Figure 
6. As can be seen in Figure 6, with addition to the HA 
powder particles being completely covered with binders, 
the micro-sample showed no signs of flaws or cracks.
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TABLE 1. Injection parameters for HA micro-parts
Injection parameters Operational process

Injection pressure 12 bar
Mold temperature 110 °C
Melt temperature 180 °C
Injection time 5 s

FIGURE 5. Photograph of green HA micro-part

FIGURE 6. FESEM image of green HA micro-sized specimen

The solvent debinding procedure was carried out 
immediately following the injection molding procedure. 
The soluble binder is typically taken out of the green 
components during the solvent debinding procedure. There 
is a higher likelihood that defects and cracks will emerge 
in components during solvent debinding as components 
become fragile at this phase. According to Basir et al. 
(2021), the range of 30 to 60 °C was the most often 
employed temperature for solvent debinding by earlier PIM 
and µPIM researchers. Based on this, solvent debinding 
was performed at 60 °C in the current study.  Figure 7 
depicts the extraction of palm stearin binder for the HA 

micro-part with time. Based on Figure 7, during the first 
20 minutes, the soluble binder was eliminated at a rather 
rapid pace; the next 30 minutes demonstrated a slowdown 
in that rate. After 50 min, 82.2% of the palm stearin was 
eliminated from the specimen. The image of the solvent 
debound HA micro-part is shown in Figure 8. Compared 
to the green part, no dimensional change was observed in 
the solvent debound part. The FESEM image of the solvent 
debound sample is illustrated in Figure 9. Based on Figure 
9, in addition to a reasonable amount of palm stearin being 
removed, the specimen developed open pores, which were 
necessary to remove the insoluble LDPE binder during the 
thermal debinding phase. The thermal debinding and 
sintering processes of the HA micro-sized components 
processed through µPIM will be discussed in our future 
study.

FIGURE 7. Palm stearin loss at 60 °C during solvent 
extraction

FIGURE 8. Comparison between green and solvent debound 
HA micro-part
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FIGURE 9. FESEM image of solvent debound HA micro-part

CONCLUSION

The aim of this study was to examine the moldability and 
solvent extraction behavior of  µPIM-processed HA micro-
sized components. Homogeneous HA feedstock with a 
powder loading of 57 vol.% was produced by mixing 
powder and binders at 150 °C. Defect-free green HA micro-
sized components were succeesully fabricated by 
appropriately employing the injection molding paramaters. 
At a temperature of 60 °C, solvent debinding was 
performed with 82.2% of the palm stearin binder effectively 
removed from the green part. The emergence of open pores 
in the solvent debound HA component will aid in the 
removal of the LDPE binder during the thermal extraction 
procedure. This study will contribute to a better 
understanding of the injection molding and solvent 
debinding of HA micro-parts.
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