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ABSTRACT

Graph data appears in broad real-world applications in modelling complex objects in big data. Effective analysis of 
graph data provides a deeper understanding of the data in data mining tasks, including classification, clustering, 
prediction, and recommendation systems. Mining a large number of graphs becomes a challenging task because 
state-of-the-art methods are not scalable due to the memory limit. To address this issue, we propose a novel 
approximate random sampling method for large-scale graph data classification. In this approach, we applied a 
representation method to encode each graph as a record of a vector string and a set of graphs as a set of N records in 
a file. Then, we partition the set of records into disjoint subsets of data blocks, making each data block a random 
sample of the data file. After that, we randomly select a subset of data blocks, each being a random sample of the 
graph dataset, and compute the different graph property distributions. Since the data blocks in this model are much 
smaller than the entire data set, it is more efficient to analyze them on a standalone small machine, and multiple data 
blocks can be analyzed on multiple nodes of the cluster in parallel. Finally, we classified the graphs of data blocks 
using the SVM algorithm. In experimental evaluation, our proposed method outperformed state-of-the-art graph 
kernels on graph classification datasets in terms of accuracy.

Keywords: Graphs classification; Random sample partitioning; Approximate computing; Distributed and 
parallel computing

INTRODUCTION

Nowadays, graph data is ubiquitous in many real-world 
applications, including web and social network data, 
molecular and biological data, internet intrusion data, and 
call pattern data in telecommunications. According to graph 
characteristics, graph data analysis tasks can be divided 
into two areas: (i) a big graph, e.g., web data, social 
networks (Devi & Kasireddy 2019; Rodrigues et al. 2013), 
and (ii) a large number of comparatively small graphs, e.g., 
biological and chemical data (Borgwardt et al. 2005), 
cybersecurity (Noel et al. 2016), and telecommunication 
patterns (Fan et al. 2010). Many practical applications 
require the analysis of complex objects that can be 
represented as large numbers of small graphs. In such 

contexts, analysts are interested in the statistical distribution 
of graph topological properties for classification, clustering, 
and predictions (Riesen & Bunke 2008; Kriege et al. 2018).

Graph data in real-world applications represent a very 
diverse range of entities in large numbers. The major 
challenge is processing and analyzing such graphs because 
algorithms for graph analysis are required to construct a 
single graph in big size but with distinct node labels, e.g., 
web and social networking data. On the other hand, 
algorithms designed for large numbers of small graph 
objects need to take into account repetitions in node labels, 
e.g., biological and chemical data. Divide and conquer is
a common strategy for large-scale data analysis in
distributed and parallel computing frameworks. Thus, a
scalable and distributed architecture is often necessary for
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processing large amounts of graph data. In consequence, 
it is indeed challenging to handle distributed complex graph 
data. Last several years, we have witnessed a growing 
interest in distributed graph computing tools, including 
Mizan (Khayyat et al. 2013), GPS (Salihoglu & Widom 
2013), GraphLab (Low et al. 2012), PowerGraph (Gonzalez 
et al. 2012), and Pregel (Malewicz et al. 2010).

For large amounts of graph data analysis, we require 
distributed representations of the graph data. Also, it is 
inefficient to analyze the entire dataset on a single machine. 
Hence, we need to take samples of graphs to estimate an 
approximate distribution of the whole dataset. In fact, a 
key to analyzing large-scale graph data is to use a subset 
of the data to estimate the entire dataset. Recently, the 
random sample partitioning (RSP) (Salloum et al. 2019) 
distributed data model was proposed to enable random 
sampling from big datasets. In the RSP model, the statistical 
properties of the entire dataset are maintained in its data 
subsets, i.e., the RSP data blocks. These RSP data blocks 
can be utilized to compute the statistical properties of the 
big dataset and facilitate approximate analysis. In the RSP 
model, the large-scale data analysis becomes an analysis 
of a subset of RSP data blocks; therefore, it is scalable to 
big data. Several approaches are proposed using the RSP 
data model, including unsupervised learning (Mahmud et 
al. 2023a; 2023b).

In this paper, we introduce an innovative distributed 
graph computing framework that can synthesize the 
approximate result of a big set of small graphs. We adopted 
the RSP data model to partition the graph dataset into 
disjoint subsets of the same-sized data blocks. Following 
the definition of the random sample partition data model 
in (Salloum et al. 2019), we call the new set of RSP graph 
data blocks as the graph random sample partition data 
model, or GRSP data model for short. From the GRSP data 
model, we can randomly select GRSP data blocks as 
random samples of the entire graph data and conduct graph 
mining analyses efficiently and effectively, as well as in 
parallel. The approximate results are used as estimates of 
the results from the entire graph dataset. In this framework, 
using a small part of the entire dataset can produce a result 
that is equivalent to results computed from the entire 
dataset. Finally, the selected GRSP data blocks are 
classified using the SVM algorithm.

Specifically, we extended the general RSP data model 
to the GRSP data model for graph data analysis.  We are 
interested in approximate graph properties, which are based 
on measuring the distribution of properties of graphs in 
subsets. The experimental results have shown that the 
distribution of graph properties and sample statistics from 
GRSP samples is equivalent to the whole dataset. 
Moreover, randomly selecting a few GRSP data blocks 
from a big dataset reduces execution time significantly and 
is efficient to analyze.

RELATED WORK

In recent years, graph representation learning (Wu et al. 
2020; Xie et al. 2022; Yi et al. 2022) has become 
increasingly popular since graph data are everywhere in 
real-world applications. Several methods have been studied 
to explore graph processing tasks, including visualization 
(Holten & Wijk 2009), evaluating community structure in 
networks (Trinh & Vuongthi 2022), classification (Zeng 
& Xie 2021), clustering (Liu et al. 2023), and query 
languages (Pienta et al. 2016). Graph analysis is essential, 
but most existing techniques are computationally expensive 
and space-intensive (Ma et al. 2016; Heidari et al. 2018). 
Many studies have been devoted to graph data analysis 
efficiently in distributed frameworks, e.g., GraphFrames 
(Dave et al. 2016), GraphX (Gonzalez & Xin 2014), 
GraphLab (Low et al. 2012), G-store (Kumar & Huang 
2016), and GraphChi (Kyrola et al. 2012). In addition to 
these approaches, graph embedding techniques offer an 
effective and efficient solution to graph data analysis 
problems. Precisely, graph embedding transforms a graph 
into a low-dimensional space, and the graph information 
is well-maintained. 

Graph embedding output can be classified into edge 
embedding, node embedding, hybrid embedding, and 
entire-graph embedding (Cai et al. 2017). The entire graph 
embedding is commonly applied to small graphs, for 
example, molecules and proteins. In such a situation, a 
graph is characterized as a vector, and two similar graphs 
are embedded closer together. The entire graph embedding 
gives an efficient and straightforward outcome for 
computing graph similarities (Mousavi et al. 2017). But 
an entire graph embedding is time-consuming compared 
to others because it requires capturing the properties of the 
entire graph. The difficulty of entire-graph embedding is 
selecting an optimal choice between the efficiency and 
expressive learning power of the embedding algorithm. 
Recent developments of graph embedding methods in the 
biomedical domain is highlighted by Wu et al. (2023).

To deal with graph data, graph contrastive learning 
and multi-view graph convolutional networks have become 
active research problems in recent years (Zhu et al. 2021; 
Chen et al. 2023). An effective way of transforming big 
graph data is sampling, which involves selecting nodes or 
edges to construct a subgraph that represents the original 
unfiltered graph. Graph sampling is fundamental research 
in many areas. Graph sampling methods can be categorized 
into two types: non-graph structure-aware and graph 
structure-aware. Non-graph structure-aware sampling does 
not consider the structure of the graph, such as node 
sampling and edge sampling. On the other hand, structure-
aware sampling considers the structure of the graph and 
will select nodes with a high degree, e.g., random walk 
sampling (Ribeiro & Towsley 2010), fire forest sampling 
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(Leskovec & Faloutsos 2006), page-rank sampling, and 
induced edge sampling (Kim & Rinaldo 2017).  

Matching the properties of the sample graphs with the 
original graph has been studied by Leskovec & Faloutsos 
(2006), Ahmed et al. (2010) and Ahmed et al. (2013). Node 
sampling (NS), edge sampling (ES), and traversal-based 
sampling (TBS) are the most commonly studied and used 
sampling techniques. Node sampling (NS) selects nodes 
based on uniform sampling to represent the original degree 
distribution accurately. The sample degrees in the NS-
induced graph are lower than the original degrees since the 
nodes are sampled independently. Consequently, due to 
projected degrees of less than one, numerous low-degree 
nodes are separated from the sample. Since Edge Sampling 
(ES) includes the selected edges only in the sample graph, 
its high-degree nodes are more frequent than NS, but the 
sampled degrees of those nodes are lower. However, these 
algorithms do not show a good similarity to the main graph. 

Forest Fire Sampling (FFS) (Leskovec & Faloutsos 
2006) is a graph generation model to perform graph 
sampling. Ahmed et al. (2010) considered FFS to show 
network distributions with a sample size of 20%. The result 
in degree distribution showed that FFS captured low-degree 
nodes with a large fraction but failed to capture high-degree 
nodes. Also, for most of the datasets, FFS failed to find the 
core graph structures. After constructing the actual 
distribution, the max-core in the sampled graphs is 
compared with its real counterparts for a sample size of 
20%. Moreover, it is observed that FFS’s max-core number 

is consistently smaller than the real max-core number by 
an order of magnitude. It points out that the local density 
of the sampled subgraph structures is not well maintained 
in the FFS. Thus, it is evidence that the FFS method failed 
to approximate the original graph eigenvalues.

METHODOLOGY

In this section, we propose a new random sample graph 
classification method (abbreviated as RSGC) for analyzing 
big graph datasets containing a large number of graph 
objects. The comprehensiveness of analysis refers to the 
analytical tasks that require multiple steps to complete, and 
some steps perform complex analytical operations. The 
divide-and-conquer strategy is adopted to divide a big set 
of graph objects into subsets, each of which is a random 
sample of the whole dataset; i.e., the topological property 
distributions of the subsets are similar to the distributions 
of the whole set of graph objects. Given the subsets of 
graph objects, which we call GRSP data blocks, we can 
randomly select a few GRSP data blocks and use them to 
compute approximate results as estimates of the entire 
graph dataset. This methodology can be implemented on 
computing clusters to efficiently and effectively analyze 
big graph data in parallel and distributed fashions.

The pseudocode for RSGC is given in Algorithm 1. 
The main steps and technologies used in this methodology 
are presented in detail as follows:

Algorithm 1: RSGC algorithm.
Input:
         Dataset, G
         Sample size, n
procedure GRSP(G,n)

         G ← AWE (G) // Apply encoding on dataset G to represent graph as vector
        {G1, G2, …, GL} ← GRSP (G, n) // Apply GRSP data model to create GRSP data blocks
        Output: a set of L graph data blocks of G
end procedure
procedure LOCALGP(Gi)
         for each Gi do

               GPi = PropertiesMeasure (Gi)             // Measure locally graph properties in each GRSP data blocks
         end for
         Output: a set of L sets of local graph properties
end procedure
procedure CLASSIFICATION(G)

        CA ← SVM (Gi) // For all GRSP data block obtain classification results
        Output: Classification accuracy of G
end procedure
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1. Graph object encoding: Given a graph dataset G. We 
first encode it into a vector representation of graphs
using the recently discovered anonymous walk
embedding (AWE) (Ivanov & Burnaev 2018). G is
preprocessed such that each record represents one
graph.

2. Generating GRSP data model: In this step, the
encoded vector dataset G is transformed into GRSP
data blocks. Random sample partitioning (RSP) is the 
basis of this work. We convert a graph dataset into a
set of disjoint graph random samples using the GRSP 
data model. Assume that G = {g1, g2,..., gN} be a graph
dataset of N graphs, and G cannot be analyzed
efficiently on traditional computing. To avoid the
computational burden, the GRSP process is applied
into G and we prepared ready-to-use GRSP data
blocks {G1, G2,..., GL}, i.e., random samples.

3. Topological property metrics: In this step, topological 
graph property metrics algorithms are employed to
estimate the local properties of each GRSP blocks
{G1, G2,...,GL}. Finally, L sets of local graph properties
are obtained.

4. Graph classification: Graph classification is the
process of predicting a class label for the graphs. The
sets of GRSP data blocks in AWE vector-embedded
graphs are classified with a simple SVM classifier.
The goal is to achieve a faster solution to the SVM
problem without a significant loss in prediction error.

EXPERIMENT

In this section, we evaluate the performance of the proposed 
RSGC method with both synthetic and real-world datasets. 

Our experiment is two-fold to test the proposed 
methodology. First, the graph properties metric was applied 
to the entire dataset to retrieve global distributions. These 
collections are used as a benchmark to testify to the 
collection graph’s property distribution. Second, we focus 
on graph classification.

DATASET

We employed the following two synthetic and two real-
world datasets in our experiments. Table 1 shows the 
characteristics of the datasets.

1. Synthetic datasets: Two synthetic graph datasets are
generated with different numbers of nodes and edges
based on random graphs whose nodes are endowed
with the normal distribution N(0;1). Each synthetic
dataset belongs to two classes with different attributed
graphs that rewire edges and permute node attributes
randomly.

2. Proteins (Dobson & Doig 2003): This dataset
describes proteins, enzymes or non-enzymes. As SSEs 
(secondary structure elements), proteins are
symbolized as graphs with nodes that are connected
with their neighbours’ amino acid sequences.

3. Airways (Petersen et al. 2011): This dataset classifies
healthy individuals and patients suffering from COPD
(chronic obstructive pulmonary disease). It is
extracted from CT scans of lung cancer screens, where 
each node denotes an airway branch attributed to its
length, and edges denote adjacencies between airway 
branches.

TABLE 2. Dataset description in a glance.
Dataset Dataset size Number of nodes Number of edges Class distribution

Synthetic 1 10,000 100 200 5000/5000
Synthetic 2 10,000 200 200 5000/5000

Proteins 1113 40 73 663/450
Airways 1966 221 220 980/986

EXPERIMENT SETUP

We generated GRSP data blocks with  data points each. 
The train-test test is used for each data block to calculate 
the accuracy of the model. We set a training data subset of 
50% and a test data subset of 50% for each GRSP data 
block in experiments. More specifically, each data block 
is divided into two folds. One acts as training, while the 

other is for testing. We repeated it for all the data blocks, 
and the average score of all the data blocks is the accuracy 
of the model. For the other methods compared, we used a 
single training data subset (50%) and a test data subset 
(50%) of the entire dataset and a similar number of random 
runs. For each applied method, the average classification 
accuracy (mean) and standard deviation (std) are tabulated 
in Table 3. For classification, we employed the widely used 
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SVM (support vector machine) classifier (Cortes & Vapnik 
1995).

The configuration of the used machine was an Intel 
(R) Core i7-4790 x64-based processor with a CPU speed
of 3.6 GHz, 16.0 GB of RAM, and Windows 10 Pro 64-bit. 
The experiments were conducted in the Python framework. 

EVALUATED METHODS

We compare the proposed RSGC algorithm with the state-
of-the-art graph kernel-based methods listed as follows:

1. Weisfeiler-Lehman Kernel (WLK) (Shervashidze et
al. 2011):  It is an efficient graph kernel scheme based
on the Weisfeiler-Lehman isomorphism test on
graphs. Its runtime is linearly related to the Weisfeiler-
Lehman graph sequence length and the number of
edges on the graphs.

2. Shortest Path Kernel (SPK) (Borgwardt & Kriegel
2005): It is a graph kernel based on the shortest paths
and retains expressivity and positive definiteness. SPK
is calculable in polynomial time.

3. Connected Subgraph Matching Kernel (CSMK)
(Kriege & Mutzel 2012): It is a subgraph-matching-
based graph kernel. CSMK uses a relation between
common subgraphs of two graphs and cliques in their 
product graph to compute the kernel.

4. GraphHopper (Feragen et al. 2013): It is a convolution 
kernel based on sub-path similarity counting that
quadratically scales with the number of nodes in the
dataset.

EXPERIMENTAL RESULT ANALYSIS

In the experiment, we first explored the graph property 
distribution and statistics of GRSP data blocks. We 
summarized the average and standard deviation results of 
ten random trials in Table 2. From the summary statistics, 
we can observe that there is no significant difference among 
GRSP data blocks. 

TABLE 2. Statistics (mean ± std) of GRSP data blocks.
Dataset Number of nodes Number of edges

Synthetic 1 99.7 ± 1.8 198.4 ± 2.6
Synthetic 2 98.2 ± 1.3 197.0 ± 3.1

Proteins 38.4 ± 3.2 69.8 ± 2.7
Airways 216.6 ± 4.1 218 ± 2.9

GRSP data block size, n=200

To demonstrate the quality of the proposed RSGC 
algorithm, we reported the average classification accuracy 
on two synthetic and two bioinformatics datasets, as 
presented in Table 3. From Table 3, we can see a comparison 
between the state-of-the-art methods and RSGC. The 
highest accuracy was achieved by the RSGC method, and 
GH obtained the second-best accuracy on the three datasets. 
Also, RSGC is consistent with the average rank obtained 
by comparing various existing methods on four experimental 
datasets, which further exemplifies the advantage of our 
proposed algorithm. 

Figure 1 presents an empirical evaluation to compare 
the computation time across different methods for four 
datasets. The average runtime of ten trails is shown. It is 
clear to see that the execution time consumption of the 
proposed RSGC algorithms is much lower than that of 
WLK, SPK, CSMK, and GH on all datasets.

TABLE 3. Classification accuracy (mean ± std of 10 trails). 
Dataset WLK SPK CSMK GH RSGC
Synthetic 1 48.3 ±1.9 (4) 82.5 ±2.8 (3) Out of memory 84.3 ±0.9 (2) 88.9 ±1.6 (1)
Synthetic 2 45.6 ±2.3 (4) 78.4 ±3.4 (3) Out of memory 81.6 ±1.2 (2) 86.4 ±1.8 (1)
Proteins 76.8 ±0.8 (2) 75.6 ±1.1 (3) 59.4 ±1.4 (5) 75.1 ±0.6 (4) 81.2 ±2.3 (1)
Airways 63.2 ±1.1 (3) 61.1 ±1.3 (4) 52.7 ±0.9 (5) 67.6 ±0.8 (2) 69.6 ±2.5 (1)
Avg. rank 3.2 3.2 5 2.5 1

Best result in bold and parenthesis () shows rank of the method.
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CONCLUSION

In this paper, we present a new methodology, RSGC, 
for graph data classification based on a GRSP data 
model. First, we adopt the anonymous walk embedding to 
encode the graph dataset into vector representations. 
Then, the GRSP data model is applied to generate 
multiple graph random samples, along with SVM as 
a classification method. Our experiments show that 
embedding graph vectors in GRSP data blocks with a 
simple SVM classifier can be very beneficial and 
achieve better classification accuracy compared to 
state-of-the-art methods and graph kernels. 

An important sampling and partitioning approach to 
solving the graph dataset problem in the context of 
large numbers of graph sets is presented and 
evaluated. The advantage of the proposed method is that 
it can significantly reduce the size of the data to be mine 
with better accuracy. We observe that there are two 
drawbacks to the proposed method: 1) In the node 
encoding process, existing methods usually overlook the 
learning of structural information. Consequently, 
the discriminative capability of representations is 
limited. (2) The proposed algorithm does not perform 
well in a big graph, e.g., a social networking or web 
graph. For further work, we are going to expand the 
proposed methodology on a cluster computing 
framework and implement the same algorithm on 
MapReduce to compare experiments with real big graph 
data datasets. Also, a theoretical analysis will be conducted 
to prove the obtained results from a statistical perspective.

FIGURE 1. Runtime comparison of the methods. 
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