
525

Jurnal Kejuruteraan 36(2) 2024: 525–532
https://doi.org/10.17576/jkukm-2024-36(2)-14

Random Sampling Method of Large-Scale Graph Data Classification

Rashed Mustafaa*, Mohammad Sultan Mahmudb & Mahir Shadidc

aDepartment of Computer Science and Engineering, University of Chittagong, Chittagong 4331, Bangladesh

bCollege of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China

cDepartment of Computer Science and Engineering, International Islamic University Chittagong, Chittagong, Bangladesh

*Corresponding author: rashed.m@cu.ac.bd

Received 9 June 2023, Received in revised form 19 September 2023
Accepted 19 October 2023, Available online 30 March 2024

ABSTRACT

Graph data appears in broad real-world applications in modelling complex objects in big data. Effective analysis of
graph data provides a deeper understanding of the data in data mining tasks, including classification, clustering,
prediction, and recommendation systems. Mining a large number of graphs becomes a challenging task because
state-of-the-art methods are not scalable due to the memory limit. To address this issue, we propose a novel
approximate random sampling method for large-scale graph data classification. In this approach, we applied a
representation method to encode each graph as a record of a vector string and a set of graphs as a set of N records in
a file. Then, we partition the set of records into disjoint subsets of data blocks, making each data block a random
sample of the data file. After that, we randomly select a subset of data blocks, each being a random sample of the
graph dataset, and compute the different graph property distributions. Since the data blocks in this model are much
smaller than the entire data set, it is more efficient to analyze them on a standalone small machine, and multiple data
blocks can be analyzed on multiple nodes of the cluster in parallel. Finally, we classified the graphs of data blocks
using the SVM algorithm. In experimental evaluation, our proposed method outperformed state-of-the-art graph
kernels on graph classification datasets in terms of accuracy.

Keywords: Graphs classification; Random sample partitioning; Approximate computing; Distributed and
parallel computing

INTRODUCTION

Nowadays, graph data is ubiquitous in many real-world
applications, including web and social network data,
molecular and biological data, internet intrusion data, and
call pattern data in telecommunications. According to graph
characteristics, graph data analysis tasks can be divided
into two areas: (i) a big graph, e.g., web data, social
networks (Devi & Kasireddy 2019; Rodrigues et al. 2013),
and (ii) a large number of comparatively small graphs, e.g.,
biological and chemical data (Borgwardt et al. 2005),
cybersecurity (Noel et al. 2016), and telecommunication
patterns (Fan et al. 2010). Many practical applications
require the analysis of complex objects that can be
represented as large numbers of small graphs. In such

contexts, analysts are interested in the statistical distribution
of graph topological properties for classification, clustering,
and predictions (Riesen & Bunke 2008; Kriege et al. 2018).

Graph data in real-world applications represent a very
diverse range of entities in large numbers. The major
challenge is processing and analyzing such graphs because
algorithms for graph analysis are required to construct a
single graph in big size but with distinct node labels, e.g.,
web and social networking data. On the other hand,
algorithms designed for large numbers of small graph
objects need to take into account repetitions in node labels,
e.g., biological and chemical data. Divide and conquer is
a common strategy for large-scale data analysis in
distributed and parallel computing frameworks. Thus, a
scalable and distributed architecture is often necessary for

526

processing large amounts of graph data. In consequence,
it is indeed challenging to handle distributed complex graph
data. Last several years, we have witnessed a growing
interest in distributed graph computing tools, including
Mizan (Khayyat et al. 2013), GPS (Salihoglu & Widom
2013), GraphLab (Low et al. 2012), PowerGraph (Gonzalez
et al. 2012), and Pregel (Malewicz et al. 2010).

For large amounts of graph data analysis, we require
distributed representations of the graph data. Also, it is
inefficient to analyze the entire dataset on a single machine.
Hence, we need to take samples of graphs to estimate an
approximate distribution of the whole dataset. In fact, a
key to analyzing large-scale graph data is to use a subset
of the data to estimate the entire dataset. Recently, the
random sample partitioning (RSP) (Salloum et al. 2019)
distributed data model was proposed to enable random
sampling from big datasets. In the RSP model, the statistical
properties of the entire dataset are maintained in its data
subsets, i.e., the RSP data blocks. These RSP data blocks
can be utilized to compute the statistical properties of the
big dataset and facilitate approximate analysis. In the RSP
model, the large-scale data analysis becomes an analysis
of a subset of RSP data blocks; therefore, it is scalable to
big data. Several approaches are proposed using the RSP
data model, including unsupervised learning (Mahmud et
al. 2023a; 2023b).

In this paper, we introduce an innovative distributed
graph computing framework that can synthesize the
approximate result of a big set of small graphs. We adopted
the RSP data model to partition the graph dataset into
disjoint subsets of the same-sized data blocks. Following
the definition of the random sample partition data model
in (Salloum et al. 2019), we call the new set of RSP graph
data blocks as the graph random sample partition data
model, or GRSP data model for short. From the GRSP data
model, we can randomly select GRSP data blocks as
random samples of the entire graph data and conduct graph
mining analyses efficiently and effectively, as well as in
parallel. The approximate results are used as estimates of
the results from the entire graph dataset. In this framework,
using a small part of the entire dataset can produce a result
that is equivalent to results computed from the entire
dataset. Finally, the selected GRSP data blocks are
classified using the SVM algorithm.

Specifically, we extended the general RSP data model
to the GRSP data model for graph data analysis. We are
interested in approximate graph properties, which are based
on measuring the distribution of properties of graphs in
subsets. The experimental results have shown that the
distribution of graph properties and sample statistics from
GRSP samples is equivalent to the whole dataset.
Moreover, randomly selecting a few GRSP data blocks
from a big dataset reduces execution time significantly and
is efficient to analyze.

RELATED WORK

In recent years, graph representation learning (Wu et al.
2020; Xie et al. 2022; Yi et al. 2022) has become
increasingly popular since graph data are everywhere in
real-world applications. Several methods have been studied
to explore graph processing tasks, including visualization
(Holten & Wijk 2009), evaluating community structure in
networks (Trinh & Vuongthi 2022), classification (Zeng
& Xie 2021), clustering (Liu et al. 2023), and query
languages (Pienta et al. 2016). Graph analysis is essential,
but most existing techniques are computationally expensive
and space-intensive (Ma et al. 2016; Heidari et al. 2018).
Many studies have been devoted to graph data analysis
efficiently in distributed frameworks, e.g., GraphFrames
(Dave et al. 2016), GraphX (Gonzalez & Xin 2014),
GraphLab (Low et al. 2012), G-store (Kumar & Huang
2016), and GraphChi (Kyrola et al. 2012). In addition to
these approaches, graph embedding techniques offer an
effective and efficient solution to graph data analysis
problems. Precisely, graph embedding transforms a graph
into a low-dimensional space, and the graph information
is well-maintained.

Graph embedding output can be classified into edge
embedding, node embedding, hybrid embedding, and
entire-graph embedding (Cai et al. 2017). The entire graph
embedding is commonly applied to small graphs, for
example, molecules and proteins. In such a situation, a
graph is characterized as a vector, and two similar graphs
are embedded closer together. The entire graph embedding
gives an efficient and straightforward outcome for
computing graph similarities (Mousavi et al. 2017). But
an entire graph embedding is time-consuming compared
to others because it requires capturing the properties of the
entire graph. The difficulty of entire-graph embedding is
selecting an optimal choice between the efficiency and
expressive learning power of the embedding algorithm.
Recent developments of graph embedding methods in the
biomedical domain is highlighted by Wu et al. (2023).

To deal with graph data, graph contrastive learning
and multi-view graph convolutional networks have become
active research problems in recent years (Zhu et al. 2021;
Chen et al. 2023). An effective way of transforming big
graph data is sampling, which involves selecting nodes or
edges to construct a subgraph that represents the original
unfiltered graph. Graph sampling is fundamental research
in many areas. Graph sampling methods can be categorized
into two types: non-graph structure-aware and graph
structure-aware. Non-graph structure-aware sampling does
not consider the structure of the graph, such as node
sampling and edge sampling. On the other hand, structure-
aware sampling considers the structure of the graph and
will select nodes with a high degree, e.g., random walk
sampling (Ribeiro & Towsley 2010), fire forest sampling

527

(Leskovec & Faloutsos 2006), page-rank sampling, and
induced edge sampling (Kim & Rinaldo 2017).

Matching the properties of the sample graphs with the
original graph has been studied by Leskovec & Faloutsos
(2006), Ahmed et al. (2010) and Ahmed et al. (2013). Node
sampling (NS), edge sampling (ES), and traversal-based
sampling (TBS) are the most commonly studied and used
sampling techniques. Node sampling (NS) selects nodes
based on uniform sampling to represent the original degree
distribution accurately. The sample degrees in the NS-
induced graph are lower than the original degrees since the
nodes are sampled independently. Consequently, due to
projected degrees of less than one, numerous low-degree
nodes are separated from the sample. Since Edge Sampling
(ES) includes the selected edges only in the sample graph,
its high-degree nodes are more frequent than NS, but the
sampled degrees of those nodes are lower. However, these
algorithms do not show a good similarity to the main graph.

Forest Fire Sampling (FFS) (Leskovec & Faloutsos
2006) is a graph generation model to perform graph
sampling. Ahmed et al. (2010) considered FFS to show
network distributions with a sample size of 20%. The result
in degree distribution showed that FFS captured low-degree
nodes with a large fraction but failed to capture high-degree
nodes. Also, for most of the datasets, FFS failed to find the
core graph structures. After constructing the actual
distribution, the max-core in the sampled graphs is
compared with its real counterparts for a sample size of
20%. Moreover, it is observed that FFS’s max-core number

is consistently smaller than the real max-core number by
an order of magnitude. It points out that the local density
of the sampled subgraph structures is not well maintained
in the FFS. Thus, it is evidence that the FFS method failed
to approximate the original graph eigenvalues.

METHODOLOGY

In this section, we propose a new random sample graph
classification method (abbreviated as RSGC) for analyzing
big graph datasets containing a large number of graph
objects. The comprehensiveness of analysis refers to the
analytical tasks that require multiple steps to complete, and
some steps perform complex analytical operations. The
divide-and-conquer strategy is adopted to divide a big set
of graph objects into subsets, each of which is a random
sample of the whole dataset; i.e., the topological property
distributions of the subsets are similar to the distributions
of the whole set of graph objects. Given the subsets of
graph objects, which we call GRSP data blocks, we can
randomly select a few GRSP data blocks and use them to
compute approximate results as estimates of the entire
graph dataset. This methodology can be implemented on
computing clusters to efficiently and effectively analyze
big graph data in parallel and distributed fashions.

The pseudocode for RSGC is given in Algorithm 1.
The main steps and technologies used in this methodology
are presented in detail as follows:

Algorithm 1: RSGC algorithm.
Input:
 Dataset, G
 Sample size, n
procedure GRSP(G,n)

 G ← AWE (G) // Apply encoding on dataset G to represent graph as vector
 {G1, G2, …, GL} ← GRSP (G, n) // Apply GRSP data model to create GRSP data blocks
 Output: a set of L graph data blocks of G
end procedure
procedure LOCALGP(Gi)
 for each Gi do

 GPi = PropertiesMeasure (Gi) // Measure locally graph properties in each GRSP data blocks
 end for
 Output: a set of L sets of local graph properties
end procedure
procedure CLASSIFICATION(G)

 CA ← SVM (Gi) // For all GRSP data block obtain classification results
 Output: Classification accuracy of G
end procedure

528

1. Graph object encoding: Given a graph dataset G. We
first encode it into a vector representation of graphs
using the recently discovered anonymous walk
embedding (AWE) (Ivanov & Burnaev 2018). G is
preprocessed such that each record represents one
graph.

2. Generating GRSP data model: In this step, the
encoded vector dataset G is transformed into GRSP
data blocks. Random sample partitioning (RSP) is the
basis of this work. We convert a graph dataset into a
set of disjoint graph random samples using the GRSP
data model. Assume that G = {g1, g2,..., gN} be a graph
dataset of N graphs, and G cannot be analyzed
efficiently on traditional computing. To avoid the
computational burden, the GRSP process is applied
into G and we prepared ready-to-use GRSP data
blocks {G1, G2,..., GL}, i.e., random samples.

3. Topological property metrics: In this step, topological
graph property metrics algorithms are employed to
estimate the local properties of each GRSP blocks
{G1, G2,...,GL}. Finally, L sets of local graph properties
are obtained.

4. Graph classification: Graph classification is the
process of predicting a class label for the graphs. The
sets of GRSP data blocks in AWE vector-embedded
graphs are classified with a simple SVM classifier.
The goal is to achieve a faster solution to the SVM
problem without a significant loss in prediction error.

EXPERIMENT

In this section, we evaluate the performance of the proposed
RSGC method with both synthetic and real-world datasets.

Our experiment is two-fold to test the proposed
methodology. First, the graph properties metric was applied
to the entire dataset to retrieve global distributions. These
collections are used as a benchmark to testify to the
collection graph’s property distribution. Second, we focus
on graph classification.

DATASET

We employed the following two synthetic and two real-
world datasets in our experiments. Table 1 shows the
characteristics of the datasets.

1. Synthetic datasets: Two synthetic graph datasets are
generated with different numbers of nodes and edges
based on random graphs whose nodes are endowed
with the normal distribution N(0;1). Each synthetic
dataset belongs to two classes with different attributed
graphs that rewire edges and permute node attributes
randomly.

2. Proteins (Dobson & Doig 2003): This dataset
describes proteins, enzymes or non-enzymes. As SSEs
(secondary structure elements), proteins are
symbolized as graphs with nodes that are connected
with their neighbours’ amino acid sequences.

3. Airways (Petersen et al. 2011): This dataset classifies
healthy individuals and patients suffering from COPD
(chronic obstructive pulmonary disease). It is
extracted from CT scans of lung cancer screens, where
each node denotes an airway branch attributed to its
length, and edges denote adjacencies between airway
branches.

TABLE 2. Dataset description in a glance.
Dataset Dataset size Number of nodes Number of edges Class distribution

Synthetic 1 10,000 100 200 5000/5000
Synthetic 2 10,000 200 200 5000/5000

Proteins 1113 40 73 663/450
Airways 1966 221 220 980/986

EXPERIMENT SETUP

We generated GRSP data blocks with data points each.
The train-test test is used for each data block to calculate
the accuracy of the model. We set a training data subset of
50% and a test data subset of 50% for each GRSP data
block in experiments. More specifically, each data block
is divided into two folds. One acts as training, while the

other is for testing. We repeated it for all the data blocks,
and the average score of all the data blocks is the accuracy
of the model. For the other methods compared, we used a
single training data subset (50%) and a test data subset
(50%) of the entire dataset and a similar number of random
runs. For each applied method, the average classification
accuracy (mean) and standard deviation (std) are tabulated
in Table 3. For classification, we employed the widely used

529

SVM (support vector machine) classifier (Cortes & Vapnik
1995).

The configuration of the used machine was an Intel
(R) Core i7-4790 x64-based processor with a CPU speed
of 3.6 GHz, 16.0 GB of RAM, and Windows 10 Pro 64-bit.
The experiments were conducted in the Python framework.

EVALUATED METHODS

We compare the proposed RSGC algorithm with the state-
of-the-art graph kernel-based methods listed as follows:

1. Weisfeiler-Lehman Kernel (WLK) (Shervashidze et
al. 2011): It is an efficient graph kernel scheme based
on the Weisfeiler-Lehman isomorphism test on
graphs. Its runtime is linearly related to the Weisfeiler-
Lehman graph sequence length and the number of
edges on the graphs.

2. Shortest Path Kernel (SPK) (Borgwardt & Kriegel
2005): It is a graph kernel based on the shortest paths
and retains expressivity and positive definiteness. SPK
is calculable in polynomial time.

3. Connected Subgraph Matching Kernel (CSMK)
(Kriege & Mutzel 2012): It is a subgraph-matching-
based graph kernel. CSMK uses a relation between
common subgraphs of two graphs and cliques in their
product graph to compute the kernel.

4. GraphHopper (Feragen et al. 2013): It is a convolution
kernel based on sub-path similarity counting that
quadratically scales with the number of nodes in the
dataset.

EXPERIMENTAL RESULT ANALYSIS

In the experiment, we first explored the graph property
distribution and statistics of GRSP data blocks. We
summarized the average and standard deviation results of
ten random trials in Table 2. From the summary statistics,
we can observe that there is no significant difference among
GRSP data blocks.

TABLE 2. Statistics (mean ± std) of GRSP data blocks.
Dataset Number of nodes Number of edges

Synthetic 1 99.7 ± 1.8 198.4 ± 2.6
Synthetic 2 98.2 ± 1.3 197.0 ± 3.1

Proteins 38.4 ± 3.2 69.8 ± 2.7
Airways 216.6 ± 4.1 218 ± 2.9

GRSP data block size, n=200

To demonstrate the quality of the proposed RSGC
algorithm, we reported the average classification accuracy
on two synthetic and two bioinformatics datasets, as
presented in Table 3. From Table 3, we can see a comparison
between the state-of-the-art methods and RSGC. The
highest accuracy was achieved by the RSGC method, and
GH obtained the second-best accuracy on the three datasets.
Also, RSGC is consistent with the average rank obtained
by comparing various existing methods on four experimental
datasets, which further exemplifies the advantage of our
proposed algorithm.

Figure 1 presents an empirical evaluation to compare
the computation time across different methods for four
datasets. The average runtime of ten trails is shown. It is
clear to see that the execution time consumption of the
proposed RSGC algorithms is much lower than that of
WLK, SPK, CSMK, and GH on all datasets.

TABLE 3. Classification accuracy (mean ± std of 10 trails).
Dataset WLK SPK CSMK GH RSGC
Synthetic 1 48.3 ±1.9 (4) 82.5 ±2.8 (3) Out of memory 84.3 ±0.9 (2) 88.9 ±1.6 (1)
Synthetic 2 45.6 ±2.3 (4) 78.4 ±3.4 (3) Out of memory 81.6 ±1.2 (2) 86.4 ±1.8 (1)
Proteins 76.8 ±0.8 (2) 75.6 ±1.1 (3) 59.4 ±1.4 (5) 75.1 ±0.6 (4) 81.2 ±2.3 (1)
Airways 63.2 ±1.1 (3) 61.1 ±1.3 (4) 52.7 ±0.9 (5) 67.6 ±0.8 (2) 69.6 ±2.5 (1)
Avg. rank 3.2 3.2 5 2.5 1

Best result in bold and parenthesis () shows rank of the method.

530

CONCLUSION

In this paper, we present a new methodology, RSGC,
for graph data classification based on a GRSP data
model. First, we adopt the anonymous walk embedding to
encode the graph dataset into vector representations.
Then, the GRSP data model is applied to generate
multiple graph random samples, along with SVM as
a classification method. Our experiments show that
embedding graph vectors in GRSP data blocks with a
simple SVM classifier can be very beneficial and
achieve better classification accuracy compared to
state-of-the-art methods and graph kernels.

An important sampling and partitioning approach to
solving the graph dataset problem in the context of
large numbers of graph sets is presented and
evaluated. The advantage of the proposed method is that
it can significantly reduce the size of the data to be mine
with better accuracy. We observe that there are two
drawbacks to the proposed method: 1) In the node
encoding process, existing methods usually overlook the
learning of structural information. Consequently,
the discriminative capability of representations is
limited. (2) The proposed algorithm does not perform
well in a big graph, e.g., a social networking or web
graph. For further work, we are going to expand the
proposed methodology on a cluster computing
framework and implement the same algorithm on
MapReduce to compare experiments with real big graph
data datasets. Also, a theoretical analysis will be conducted
to prove the obtained results from a statistical perspective.

FIGURE 1. Runtime comparison of the methods.

ACKNOWLEDGEMENT

Support for this research was provided by the Chittagong
University, Bangladesh. Research cell, Annual
Research Grant 2021-2022, grant no. 599/2021-22/3rd
call/21/2022.

DECLARATION OF COMPETING
INTEREST

None

531

Feragen, A., Kasenburg, N. Petersen, J. Bruijne, M. D.
& Borgwardt, K. 2013. Scalable kernels for graphs
with continuous attributes. Proceedings of the 26th
International Conference on Neural Information
Processing Systems 1: 216–224.

Gonzalez, J. E., Low, Y., Gu, H., Bickson, D. & Guestrin
C. 2012. PowerGraph: Distributed graph-parallel
computation on natural graphs. Proceedings of the
10th USENIX Conference on Operating Systems
Design and Implementation, 17–30.

Gonzalez, J. E., Xin, R. S., Dave, A., Crankshaw, D.,
Franklin, M. J. & Stoica, I. 2014. GraphX: Graph
processing in a distributed dataflow framework.
Proceedings of the 11th USENIX Conference on
Operating Systems Design and Implementation,
599–613.

Heidari, S., Simmhan, Y. L., Calheiros, R. N. & Buyya,
R. 2018. Scalable graph processing frameworks: A
taxonomy and open challenges. ACM Computing
Surveys 51(3): 1–53.

Holten, D. & Wijk J. J. V. 2009. A user study on
visualizing directed edges in graphs. Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems, 2299–2308.

Ivanov, S. & Burnaev, E. 2018. Anonymous walk
embeddings. Proceedings of the 35th International
Conference on Machine Learning 80: 2186–2195.

Khayyat, Z., Awara, K., Alonazi, A., Jamjoom, H.,
Williams, D. & Kalnis, P. 2013. Mizan: a system
for dynamic load balancing in large-scale graph
processing. Proceedings of the 8th ACM European
Conference on Computer Systems 169–182.

Kim, N. & Rinaldo, A. 2017. Edge-induced sampling
from Graphons. Arxiv, 1–12.

Kriege N. M., Fey, M., Fisseler, D., Mutzel, P. & Weichert,
F. 2018. Recognizing cuneiform signs using graph
based methods. Proceedings of Machine Learning
Research 88: 31–44.

Kriege, N. & Mutzel, P. 2012. Subgraph matching
kernels for attributed graphs. Proceedings of the
29th International Conference on Machine Learning,
291–298.

Kumar, P. & Huang, H. H. 2016. G-store: High-
performance graph store for trillion-edge processing.
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and
Analysis, 830–841.

Kyrola, A., Blelloch, G. & Guestrin, C. 2012. GraphChi:
Large-scale graph computation on just a PC. 10th
USENIX Symposium on Operating Systems Design
and Implementation 31-46.

Leskovec, J. & Faloutsos, C. 2006. Sampling from large
graphs. Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery
and data mining 631-636.

R. 2010. Time-based sampling of social network
activity graphs. Proceedings of the Eighth Workshop
on Mining and Learning with Graphs. 1–9.

 Ahmed, N. K., Neville, J. & Kompella, R. 2013. Network
sampling: From static to streaming graphs. ACM
Transactions on Knowledge Discovery from Data
8(2): 1–56.

Borgwardt, K. M. & Kriegel H. P. 2005. Shortest-path
kernels on graphs. Proceedings of the 5th IEEE
International Conference on Data Mining. 74–81.

Borgwardt, K. M., Ong, C. S., Schonauer, S.,
Vishwanathan, S. V. N., Smola, A. J. & Kriegel, H. P.
2005. Protein function prediction via graph kernels.
Bioinformatics 21(1): 47–56.

Cai, H., Zheng, V. W. & Chang, K. C. C. 2017. A
comprehensive survey of graph embedding:
Problems, techniques, and applications. IEEE
Transactions on Knowledge and Data Engineering
30: 1616–1637.

Chen, Z., Fu, L., Xiao, S., Wang, S., Plant, C. & Guo, W.
2023. Multi-view graph convolutional networks with
differentiable node selection. ACM Transactions on
Knowledge Discovery from Data 18(1): 1–21.

Cortes, C. & Vapnik, V. 1995. Support-vector networks.
Machine Learning 20, 273–297.

Dave, A., Jindal, A., Li, L. E., Xin, R., Gonzalez, J. &
Zaharia, M. 2016. GraphFrames: An integrated API
for mixing graph and relational queries. Proceedings
of the Fourth International Workshop on Graph Data
Management Experiences and Systems, 1–8.

Devi, N. M & Kasireddy, S. R. 2019. Graph analysis
and visualization of social network big data. Social
Network Forensics, Cyber Security, and Machine
Learning 93–104.

Dobson, P. D. & Doig, A. J. 2003. Distinguishing enzyme
structures from non-enzymes without alignments.
Journal of Molecular Biology 330(4): 771–783.

Fan, W., Li, J., Ma, S., Tang, N., Wu, Y. & Wu, Y.
2010. Graph pattern matching: from intractable

REFERENCES

Ahmed, N. K., Berchmans, F., Neville, J. & Kompella,

to polynomial time. Proceedings of the VLDB
Endowment 3(1–2): 264–275.

532

Salihoglu, S. & Widom, J. 2013. GPS: a graph processing
system. Proceedings of the 25th International
Conference on Scientific and Statistical Database
Management 1–12.

Salloum, S., Huang, J. Z. & He, Y. 2019. Random
sample partition: A distributed data model for big
data analysis. IEEE Transactions on Industrial
Informatics 15(11): 5846–5854.

Shervashidze, N., Schweitzer, P., Leeuwen, E. J.,
Mehlhorn, K. & Borgwardt, K. M. 2011. Weisfeiler-
Lehman graph kernels. Journal of Machine Learning
Research 12: 2539–2561.

Trinh, T. & Vuongthi, N. 2022. A predictive paradigm
for event popularity in event-based social networks.
IEEE Access 10(1): 125421–125434.

Wu, Y., Chen, Y., Yin, Z., Ding, W. & King, I., 2023. A
survey on graph embedding techniques for biomedical
data: Methods and applications. Information Fusion
100(1): 1–24.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C. & Philip,
S. Y. 2020. A comprehensive survey on graph neural
networks. IEEE Transactions on Neural Networks
and Learning Systems 32(1): 4–24.

Xie, Y., Xu, Z., Zhang, J., Wang, Z. & Ji, S. 2022. Self-
supervised learning of graph neural networks:
A unified review. IEEE Transactions on Pattern
Analysis and Machine Intelligence 45(2): 2412 -
2429.

Yi, H. C., You, Z. H., Huang, D. S. & Kwoh, C. K. 2022.
Graph representation learning in bioinformatics:
trends, methods and applications. Briefings in
Bioinformatics 23(1): 1-24.

Zeng, J. & Xie, P. 2021. Contrastive self-supervised
learning for graph classification. Proceedings of the
AAAI Conference on Artificial Intelligence 35 (1):
10824–10832.

Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S. & Wang, L.
2021. Graph contrastive learning with adaptive
augmentation. Proceedings of the Web Conference
2069–2080.

Liu, B., Che, Z., Zhong, H. & Xiao, Y, 2023. A ranking
based multi-view method for positive and unlabeled
graph classification. IEEE Transactions on
Knowledge & Data Engineering 35(3): 2220–2230.

Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola,
A. & Hellerstein, J. M. 2012. Distributed Graphlab:
A framework for machine learning and data mining
in the cloud. Proceedings of the VLDB Endowment
5(8): 716–727.

Ma, S., Li, J., Hu, C., Lin, X. & Huai, J. 2016. Big graph
search: challenges and techniques. Frontiers of
Computer Science 10(3): 387–398.

Mahmud, M. S., Huang, J. Z., Ruby, R. & Wu, K. 2023a.
An ensemble method for estimating the number
of clusters in a big data set using multiple random
samples. Joural of Big Data 10(40): 1–33.

Mahmud, M. S., Huang, J. Z., Ruby, R., Ngueilbaye, A.
& Wu, K. 2023b. Approximate clustering ensemble
method for big data. IEEE Transactions on Big Data
9(4): 1142–1155.

Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C.,
Horn, I., Leiser, N. & Czajkowski, G. 2010. Pregel: A
system for large-scale graph processing. Proceedings
of the ACM SIGMOD International Conference on
Management of Data, 135–146.

 Mousavi, S. F., Safayani, M., Mirzaei, A. & Bahonar, H.
2017. Hierarchical graph embedding in vector space
by graph pyramid. Pattern Recognition 61: 245–254.

Noel, S., Harley, E., Tam, K., Limiero, M. & Share,
M. 2016. CyGraph: Graph-based analytics and
visualization for cybersecurity. Handbook of
Statistics 35: 117–167.

Petersen, J., Nielsen, M., Lo, P., Saghir, Z., Dirksen, A. &
Bruijne, M. 2011. Optimal graph based segmentation
using flow lines with application to airway wall
segmentation. Information Processing in Medical
Imaging 49–60.

Pienta, R., Tamersoy, A., Endert, A., Navathe, S., Tong,
H. & Chau, D. H. 2016. VISAGE: Interactive visual
graph querying. Proceedings of the International
Working Conference on Advanced Visual Interfaces
272-279.

Ribeiro, B. & Towsley, D. 2010. Estimating and sampling
graphs with multidimensional random walks.
Proceedings of the 10th ACM SIGCOMM Conference
on Internet Measurement 390-403.

Riesen K. & Bunke, H. 2008. IAM graph database
repository for graph based pattern recognition
and machine learning. Structural, Syntactic, and
Statistical Pattern Recognition 287–297.

Rodrigues, J. F., Tong, H., Pan, J. Y., Traina, A. J. M.,
Traina, C. & Faloutsos, C. 2013. Large graph
analysis in the GMine system. IEEE Transactions on
Knowledge and Data Engineering 25(1): 106–118.

