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ABSTRACT

The goal of combined economic and emission dispatch (CEED) in the power system is to solve the economics management 
of generators in order to achieve both minimum fuel prices and pollution levels while meeting load demands 
and operating limits. The Search and Rescue (SAR) optimization methodology is developed in this study to 
address the CEED problem, and the results gained are compared with the Evolutionary Programming and 
Flower Pollination Algorithm methods. Those analyses are able to evaluate the effectiveness as well as the rate of 
convergence of the methods under consideration. In general, the CEED problem is initially considered a bi-objective 
problem that has been turned into a single objective function by the use of the price penalty element in its solution. 
Both solutions were tested on an IEEE 10-Generator 39-Bus System, which has a valve point impact with transmission 
loss. MATLAB is additionally utilized to run modeling for the evaluated system, with each system subjected to three 
separate load demands. The results reveal that the SAR technique performs better because it generates resilient and 
effective solutions to the CEED problem with the lowest fuel price, greenhouse gas emissions, CEED price, and power 
loss.

Keywords:  combined economic and emission dispatch; valve point effect; search and rescue algorithm; flower 
pollination algorithm; evolutionary programming

INTRODUCTION

The generation of energy, such as electricity, is critical to 
the growth and sustainability of contemporary civilization. 
Electricity is unquestionably a crucial aspect of 
contemporary society, and it plays a significant part in both 
economic development and living quality.  Fuel prices have 
risen as a result of the paucity of fuels used to generate 
energy, as well as the expanding population number. As a 
result, the power generation industry is concerned with 
running their power company economically with lower 
operational prices while meeting their customers’ load 

demand. Economic load dispatch (ELD) was recently 
implemented to attain this situation.

ELD is generally intended the most appropriate source 
of electricity from every generator in the system whereas 
operational limitations and electrical demands are met. In 
addition, in order for ELD to become an actual worry in 
implementation, the valve point impact must be addressed 
Hoorebeeck et. al. 2020). As a result, the ELD problem 
is an essential tool for attaining optimum operation 
and efficient generation management in electrical 
networks. However, because of the government’s 
stringent constraints and laws aimed at protecting the 
environment, it is recommended that electric companies 
and energy providers focus on the environmental 
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implications of power generation. As a result, the combined 
economic and emission dispatch (CEED) has been 
implemented to reduce both running fuel prices and 
greenhouse (GHG) emissions at the same time.

Such a financial and environmental dispatch 
challenge could be addressed with technology that is 
capable of meeting operational restrictions. As a 
result, numerous types of optimization methods, 
namely traditional optimization techniques and 
current optimization techniques, have been 
introduced. Traditional approaches often begin with an 
arbitrarily chosen initial solution and progress to an ideal 
solution with each succeeding iteration. The majority of 
them will have a low degree of convergence and a lengthy 
execution duration. The Newton approach  and the 
Lambda Iteration method are two well-known 
traditional techniques. Modern optimization 
techniques, on the other hand, usually incorporate heuristic 
algorithms, and metaheuristic algorithms. Evolutionary 
Programming (EP) (Kamari et al. 2020) and Flower 
Pollination Algorithm (FPA) (Ramli et al. 2021) are 
examples of popular metaheuristic algorithms. 

The Search and Rescue (SAR) optimization approach 
will be suggested to tackle the CEED problem. 
According to (Shabani et al. 2019), the word ‘search’ 
refers to a methodical operation to locate persons in 
difficulty using accessible resources, whereas ‘rescue’ 
refers to an operation that saves people and brings them 
to a place of safety. Despite the fact that human 
strategies for searching changed over thousands of 
years, there is no algorithm that uses human-like 
characteristics to solve optimization problems. In 
addition to SAR, this study looks into two more classic 
metaheuristic algorithms: FPA and EP. SAR, FPA, and 
EP will be compared to assess their efficacy and 
effectiveness. 

In this work, all methods will be simulated in Matlab 
using two test systems, an IEEE 3-Generator 9-Bus system 
and an IEEE 10-Generator 39-Bus system, each with three 
different load needs. Differing generators will 
have differing fuel prices due to their position in respect 
to the load. Higher generating prices will follow, 
particularly for those who provide output that is not at 
the ideal level for load demand. As a result, the focus of 
this research is on offering the lowest fuel prices 
while minimizing the greenhouse gas emissions of 
power systems for the purpose to find the efficiency and 
convergence features in most effective power 
management across SAR, FPA, and EP. 

CEED PROBLEM FORMULATION

The two objective functions have to satisfy equality and the 
inequality limitation. The quantity of electricity produced 
must meet the particular power requirement while 

maintaining according to the generating constraints for 
every generator. As a result, the CEED problem structure 
is illustrated as follows. 

FUEL PRICES

The fuel prices in terms of output power, can be 
expressed as below.

(1)

Here,  is the real output power for the generating unit i. 
Whereas ,  and  are the prices coefficients for .  
When the valve point effect is considered, the price 
function based on the ripple curve (valve point effect) 
becomes more accurate and is reformed by integrating 
with sinusoidal functions, as illustrated below.

(2)

Here,  is the total fuel price of the system based 
on the valve point effect. N is the number of generators. 
Whereas , , ,  and  are the price coefficients of 

.

GHG EMISSIONS

GHGs are released into the atmosphere when the generators 
run on fuel from fossil sources. As illustrated below, the 
total GHG emission, E, is linked to the total of exponential 
and quadratic formulae.

(3)

Here, , , ,  and  are the emission coefficients 
for .

POWER LOSSES

The sum of the transmission loss from every generator 
comprised is given below using Kron’s formula.
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(4)

Here,  is the oberall power loss in the transmission 
network. While ,  and  are the B-loss coefficients 
for the generating plants.

CONSTRAINTS

There are a pair of sorts of limitations: equality constraints 
and inequality constraints. To satisfy the equality constraint, 
the entire quantity of power produced, , must be 
equivalent to the power demand, , and the power loss, 

, as shown as follows.

(5)

Different operating limitations for distinctive 
generators can be evaluated for the inequality constraint, 
as indicated below.

(6)

Here,  and  are the lowest and highest power 
boundaries for generator .

OVERALL PRICE OF CEED

CEED can be created by combining two goals: fuel prices 
and GHG emissions. The total price of CEED, , is 
displayed below:

(7)

(8)

In this case, h is the ratio of the maximum fuel price 
to the maximum GHG emission. 

SEARCH AND RESCUE ALGORITHM

The Search and Rescue (SAR) optimization strategy is a 
novel metaheuristic method for identifying individuals who 

have gone lost or are in distress. During the procedure, 
humans can find clues and locate individuals who are 
missing. Human searches are classified into two types: 
social searches and individual searches. SAR, in 
summary, its seven requirements. The improved clues 
will be recorded in the irst component’s location matrix 
X, while the old clues will be saved in the memory 
matrix M. As shown below, the clue matrix C will include 
both matrices.

(9)

The social phase that follows will look for random 
regions that have a higher chance of harboring a hint. In 
any case, the search will be focused on the present place 
of the clue. The equations below describe the social phase.

If 

(10)

If 

(11)

In (10) and (11), SE is the parameter of the social 
effect, is the randomly determined value of J.  and 

 represent the new and current spots of dimension j for 
person  respectively.  is the dimension j spot for the 
obtained hint k.  and  accordingly mark the distributed 
random number [-1,1] and [0,1].  and  are 
accordingly represent the  and  objective functions. 

In the third part (the individual phase), in search 
processes will be oversee within the present location 
despite the dimension. Individuals will also correlate and 
integrate diverse social clues. The associated equation is 
as follows:

(12)

Here,  symbolizes the new location for human .  
represents a uniformly distributed value [0,1]. k and m, are 
random numbers [1, N]. 

If the result is beyond its solution space, the fourth 
component executes boundary control as an alternate 
method, and the equation is displayed below.

(13)
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In this scenario,  and  are the highest and 
lowest constraints for the dimension j, varying [1, D].

The matrices M and X in the fifth component will have 
to be modified after each occurrence. If  exceeds 

,  is saved in matrix M. The corresponding 
equations are as follows:

(14)

(15)

 represents the location of n in a memory matrix, 
and  represents the location array for human i. While 

 represents the new location function, 
represents the current location function.

The sixth element involves failed search number USN, 
and maximum failed search number MU. If the USN is 
unsuccessful to uncover a better clue, it may get one point; 
otherwise, it will remain at 0. When  is greater than 
MU, it is set to 0.

(16)

(17)

Two control parameters will be introduced in the 
seventh component: social effect SE, and MU. When the 
value of SE increases, so does the convergence rate, which 
is between [0, 1]. It corresponds directly to the dimension 
in the context of MU, and the equation is as follows.

(18)

The SAR framework depicted in Figure 1 is constructed 
on the seven already mentioned components.

Update clues matrix 
(Eq. 9)

Generate new solutions 
(Eq. 10 & 11)

Boundary control 
(Eq. 13)

New solution better 
than previous one?

Maintain with the 
previous solution

Update memory 
matrix (Eq. 14)

Update human motion 
matrix (Eq. 15)

Update USNi 
(Eq. 16)
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FIGURE 1. The Framework of SAR
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FLOWER POLLINATION ALGORITHM

Flower Pollination Algorithm (FPA) is a 
metaheuristic method created in 2012 by Xin-She Yang. 
It is inspired by the act of mating a plant known as 
pollination, which has two types: self-pollination and 
cross-pollination. In general, there are four rules in the 
formation of FPA. According to Rule 1, by following 
Levy flights, cross-pollination and biotic pollination are 
deemed global pollination. According to Rule 2, self-
pollination and abiotic pollination are both categorised as 
local pollination. According to Rule 3, the constant of a 
flower is equal to the chance of its reproduction and 
proportionate to the similarities of the two flowers 
implicated. According to Rule 4, a switch probability p 
is utilised to manage both global and local pollination.

Based on the stated rules, some equations were 
developed. Equation (19) refers to the combination between 
global pollination and flower constant. Whereas (20) 
refers to the combination of local pollination and flower 
constant.

(19)

(20)

Here,  is the pollinator  or the solution vector of  
on iteration .  is the best solution.  is the step size 
of Levy-Flight.  and  are the pollinators from different 
flowers but similar species. Levy-flight can be accounted 
for the movement of insects over longer distance with 
different steps. A related equation is shown below. 
refers to the gamma function for the step . Detail 
explanation about FPA can be found in (Ramli et. al. 
2021).

(21)

EVOLUTIONARY PROGRAMMING

D. Fogel proposed Evolutionary Programming (EP) in 1962. 
EP is predicated on the biological evolution process of
developing the greatest breeds. The best breed search model 
in this technique can be used to find solutions to complex
engineering problems. The unique process of the EP
algorithm is the process of mutation and competition
between old and new breeds. The overall process of the EP
algorithm is given in (Kamari et. al. 2020).

OPTIMAL ECONOMIC DISPATCH 
ALGORITHM

SAR, FPA, and EP optimisation techniques will be computed 
in MATLAB utilising an IEEE 10-Generator 39-Bus test 
system in this study. Table 1 tabulates the price coefficients 
( , , ,  and ) and the generation operating 
components ( and ) for the evaluated system. 
Meanwhile, the emission coefficients ( , , ,  and 
) for the evaluated system are tabulated in Table 2. 

A total of 500 iterations value and 20 population size 
are employed in this simulation. Furthermore, in general, 
optimisation methods have unique variables that regulate 
the efficiency and effectiveness of solving the 
optimisation issue by modifying the values. In FPA, as 
stated in (Ramli et. al. 2021), 

TABLE 1. The Test System Price Coefficients and Generation Operating Components
Unit P1 P2 P3 P4 P5

($/h) 1000.403 950.606 900.705 800.705 756.799

($/MWh) 40.5407 39.5804 36.5104 39.5104 38.5390

($/(MW)2h)
0.12951 0.10908 0.12511 0.12111 0.15247

 ($/h) 33 25 32 30 30

(rad/MW)
0.0174 0.0178 0.0162 0.0168 0.0148

(MW) 10 20 47 20 50

(MW) 55 80 120 130 160

Unit P6 P7 P8 P9 P10

($/h) 451.325 1243.531 1049.998 1658.569 1356.659

($/MWh) 46.1592 38.3055 40.3965 36.3278 38.2704

continue ...
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($/(MW)2h)
0.10587 0.03546 0.02803 0.02111 0.01799

 ($/h) 20 20 30 60 40

(rad/MW)
0.0163 0.0152 0.0128 0.0136 0.0141

(MW) 70 60 70 135 150

(MW) 240 300 340 470 470

... cont.

the variables λ and p were adjusted to 1.5 and 0.8, 
respectively, to produce the optimum answers. As 
described in (Shabani et. a. 2019) and (Kamari et. al. 
2020), the parameter β in EP and the parameter SE in 
SAR are both set to 0.05.

Power loss is taken into account when B-
coefficients are considered. Equation (22) depicts the 
transmission loss of the test system.

(22)

TABLE 2. The Emission Coefficients for The Test System
Unit P1 P2 P3 P4 P5

(Kg/h) 360.0012 350.0056 330.0056 330.0056 13.8593

(Kg/MWh)
-3.9864 -3.9524 -3.9023 -3.9023 0.3277

(Kg/
(MW)2h)

0.04702 0.04652 0.04652 0.04652 0.00420

(Kg/h) 0.25475 0.25475 0.25163 0.25163 0.24970

(1/MW) 0.01234 0.01234 0.01215 0.01215 0.01200

Unit P6 P7 P8 P9 P10

(Kg/h) 13.8593 40.2669 40.2669 42.8955 42.8955

(Kg/MWh)
0.3277 -0.5455 -0.5455 -0.5112 -0.5112

(Kg/
(MW)2h)

0.00420 0.00680 0.00680 0.00460 0.00460

(Kg/h) 0.24970 0.24800 0.24990 0.25470 0.25470

(1/MW) 0.01200 0.01290 0.01203 0.01234 0.01234

RESULTS AND DISCUSSION

SAR, FPA, and EP results and findings are evaluated using 
5 objective values: power produced , power loss , fuel 
price , CEED price, , and GHG emission . This 

study will also acquire and compare convergence trajectories. 
The IEEE 10-Generator 39-Bus system is made up of ten 
generator units.  Table 3 shows the optimisation results for 
the test system with power demand PD of 1000 MW utilising 
SAR, FPA, and EP.
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TABLE 3. Test on the Evaluated System with a PD of 
1000 MW

Outputs SAR FPA EP

(MW)
1,005.1332 1,009.0138 1014.2216

(MW)
5.1332 9.0138 14.2216

($/h)
55,219.8834 55,338.4803 55,591.4838

(kg/h)
1,641.0548 1,643.4027 1,650.9509

($/h)
90,203.8949 90,225.1381 90,499.2119

Based on the results tabulated in Table 3, SAR still 
maintains its best performance behaviour compared to FPA 
and EP. The overall CEED price,  that obtained by 
SAR is 90,203.8949 $/h, which is cheaper than FPA and 
EP, which are 90,225.1381 $/h and 90,499.2119 $/h, 
respectively. For ,  and  point of view, the results 
obviously show that FPA and EP give higher prices and 
GHG emission compared to SAR. SAR, on the other hand, 
produces a power loss, , that is 0.51% of  , which is 
slightly lower than FPA (0.90%) and EP (1.42%).

Tables 4 and 5 illustrate the optimisation results 
utilising all three strategies on the evaluated system with 
PD of 1500 MW and 2000 MW, respectively.

TABLE 4. Test on the Evaluated System with a PD of 
1500 MW

Outputs SAR FPA EP

 (MW) 1,510.0504 1,521.0058 1535.9736

 (MW) 10.0504 21.0058 35.9736

 ($/h) 82,418.7832 82,696.2859 83,424.1728

 (kg/h) 2,556.9246 2,640.2669 2,672.3450

 ($/h) 141,677.4646 142,416.8538 143,985.1360

From the results tabulated in Table 8 and Table 9, SAR 
still remains the forefront to produce lower CEED price, 
generation price, GHG emission and power loss, in 
comparison to EP and FPA. Again, SAR is believed to be 
more cost-effective and efficient in producing optimal 
solutions in a 10-generator system than FPA and EP.

TABLE 5. Test on the Evaluated System with a PD of 
2000 MW

Outputs SAR FPA EP

(MW)
2,010.0014 2,017.2834 2,018.8974

(MW)
10.0014 17.2834 18.8974

($/h)
110,347.0541 110,655.8859 110,812.4584

(kg/h)
3,866.6101 3,926.9780 3,932.8379

($/h)
208,043.8108 208,930.9766 209,249.7959

CONVERGENCE CURVE

FPA, SAR and EP are further evaluated in terms of 
convergence. The convergence curve ( against the 
quantity of iterations) of every three approaches for the 
evaluated system at PD of 2000 MW is displayed in Fig. 2.

FIGURE 2. Convergence Curve (Test System at 
 MW)

According to Fig. 2, all three approaches begin to 
converge at 19 iterations after steadily declining. These 
findings imply that SAR, EP and FPA possess about the 
identical beginning decreasing pace. Equivalent results 
have been reported for the SAR, EP and FPA convergence 
curves in evaluated system at PD of 1000 MW and 1500 
MW. 

CONCLUSIONS

This work compares three methods for optimization, SAR, 
FPA, and EP, to provide an economic management 
technique for solving the CEED problem. There is one 
recommended test system, which is an IEEE 10-Generator 
39-Bus with a valve point effect and transmission loss. This
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system was used in MATLAB simulations with three 
distinct power demands, . According to the simulation 
outcomes, SAR outperforms FPA and EP in terms of 
efficiency and effectiveness while staying unaffected by 
varying power demands. SAR is thought to be more cost-
effective since it may reduce generation costs, GHG 
emissions, and overall CEED costs with greater efficiency. 
Furthermore, the power loss, , resulted from SAR is 
believed to be in a narrower range when weighed against 
the other approaches. The convergence curves demonstrate 
that all three techniques have nearly identical convergence 
pace. On summary, SAR is the best appropriate economic 
management algorithm for the CEED issue in the power 
system when weighed against EP and FPA. 
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