CLOSE-TO-CONVEX FUNCTIONS WITH STARLIKE POWERS

(Fungsi Hampir Cembung dengan Kuasa Bak Bintang)

D K THOMAS

ABSTRACT

Let K^{α} be the set of functions f, analytic in $z \in D = \{z : |z| < 1\}$ satisfying $\operatorname{Re}\left(\frac{f'(z)}{(g(z)/z)^{\alpha}}\right) > 0$, for g starlike in D and $0 \le \alpha \le 1$. It is shown that such functions form

a subset of the close-to-convex functions. Sharp bounds for the coefficients are given and the Fekete-Szegö problem is solved.

Keywords: univalent functions; starlike functions; close-to-convex functions; coefficients; Fekete-Szegö

ABSTRAK

Andaikan K^{α} set fungsi f, analisis dalam $z \in D = \{z : |z| < 1\}$ memenuhi $Ny\left(\frac{f'(z)}{(g(z)/z)^{\alpha}}\right) > 0$, untuk g bak bintang dalam D dan $0 \le \alpha \le 1$. Dapat ditunjukkan bahawa

fungsi tersebut merupakan subset bagi suatu set fungsi hampir cembung. Batas-batas terbaik bagi pekali diberikan dan masalah Fekete-Szegö diselesaikan.

Kata kunci: fungsi univalen; fungsi bak bintang; fungsi hampir cembung; pekali; Fekete-Szegö

1. Introduction

Let S be the class of analytic normalised univalent functions f defined in $z \in D = \{z : |z| < 1\}$ and given by

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n.$$
⁽¹⁾

Denote by S^* the subset of functions, starlike with respect to the origin and by K the subset of close-to-convex functions. Then $f \in S^*$, if and only if, for $z \in D = \{z : |z| < 1\}$,

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > 0$$

and $f \in K$ if and only if, there exists $g \in S^*$ such that

$$\operatorname{Re}\left\{\frac{zf'(z)}{g(z)}\right\} > 0.$$

Hence $S^* \subset K \subset S$.

For $0 \le \alpha \le 1$, the subset $B(\alpha)$ of Bazilevič functions (1955) has been widely studied and is defined for $z \in D = \{z : |z| < 1\}$ by $\operatorname{Re}\left\{\frac{zf'(z)}{f(z)^{1-\alpha}g(z)^{\alpha}}\right\} > 0$

for some $g \in S^*$.

In the original paper of Bazilevič (1995), it was shown that $B(\alpha) \subset S$. Taking $g(z) \equiv z$ gives the class $B_1(\alpha)$, which has been extensively studied e.g. Singh (1973), Thomas (1985) and Thomas (1991). We note that $B_1(0)$ is the well-known class R of functions whose derivative has positive real part in D.

Thus $f \in B_1(\alpha)$, if and only if

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)^{1-\alpha}z^{\alpha}}\right\} > 0$$

We choose a different route as follows.

2. Main Result

Definition 1. For $0 \le \alpha \le 1$, denote by K^{α} , the set of functions f analytic in $z \in D = \{z : |z| < 1\}$ and given by (1) such that for some $g \in S^*$,

$$\operatorname{Re}\left\{\frac{zf'(z)}{z^{1-\alpha}g(z)^{\alpha}}\right\} > 0,$$

which is equivalent to

$$\operatorname{Re}\left\{\frac{f'(z)}{\left(g(z)/z\right)^{\alpha}}\right\} > 0.$$

Theorem 1. Let $f \in K^{\alpha}$. Then $f \in K$ and so is univalent for $z \in D = \{z : |z| < 1\}$.

Proof: Let $G(z) = z(g(z)/z)^{\alpha}$. Then it is easily seen that $G \in S^*(1-\alpha)$ for $0 < \alpha \le 1$, where $S^*(1-\alpha)$ is the class of functions starlike of order $1-\alpha$. Thus $K^{\alpha} \subset K$ and so functions in K^{α} are univalent. \Box

Theorem 2. Let $f \in K^{\alpha}$ and be given by (1) and F be defined for $z \in D = \{z : |z| < 1\}$ by

$$F'(z) = 1 + \sum_{n=1}^{\infty} n \gamma_n(\alpha) z^n = \frac{(1+z)}{(1-z)^{2\alpha+1}} = \left(1 + \sum_{k=1}^{\infty} \binom{2\alpha+k-1}{k} z^k\right) \left(1 + 2\sum_{k=1}^{\infty} z^k\right)$$
(2)

with $\gamma_1(\alpha) = 1$. Then $|a_n| \leq \gamma_n(\alpha)$ for $n \geq 2$, where $\gamma_n(\alpha) \sim \frac{2n^{2\alpha-1}}{\Gamma(2\alpha+1)}$ as $n \to \infty$.

The inequality is sharp.

Proof: Write

$$g(z) = z + \sum_{k=2}^{\infty} b_k z^k$$
, $\left(\frac{g(z)}{z}\right)^{\alpha} = 1 + \sum_{k=1}^{\infty} B_k(\alpha) z^k$ and $h(z) = 1 + \sum_{k=1}^{\infty} c_k z^k$,

where $h \in P$, the class of functions whose derivative has positive real part in D. Then

$$f'(z) = \left(\frac{g(z)}{z}\right)^{\alpha} h(z) = \left(1 + \sum_{k=1}^{\infty} B_k(\alpha) z^k\right) \left(1 + \sum_{k=1}^{\infty} c_k z^k\right).$$
(3)

Equating the coefficients, we obtain for $n \ge 2$, $na_n = \sum_{i=0}^{n-1} B_i(\alpha) c_{n-1-i}$, where $B_0(\alpha) = c_0 = 1$.

A result of Klein (1968) shows that for $g \in S^*$ and $i \ge 1$,

$$\left|B_{i}\left(\alpha\right)\right| \leq \left|\binom{-2\alpha}{i}\right| = \binom{2\alpha+i-1}{i}$$

and so using the well-known inequality $|c_n| \le 2$ for $h \in P$ and comparing the coefficients in (2) and (3), the result follows. \Box

We note that elementary analysis shows that $\gamma_n(\alpha) \sim \frac{2n^{2\alpha-1}}{\Gamma(2\alpha+1)}$ as $n \to \infty$.

Theorem 1 gives the inequalities $|a_2| \le 1 + \alpha$ and $|a_3| \le \frac{1}{3}(2\alpha^2 + 5\alpha + 2)$, which we will use in the following theorem.

We now solve the Fekete-Szegö problem for functions in K^{α} , noting that when $\alpha = 1$ we obtain the classical result of Keogh and Merkes (1969).

Theorem 3. Let $f \in K^{\alpha}$. Then

$$|a_{3} - \mu a_{2}^{2}| \leq \begin{cases} \frac{1}{3}(2+\alpha)(1+2\alpha) - \mu(1+\alpha)^{2} & \text{if } \mu \leq \frac{2\alpha}{3(1+\alpha)}, \\ \frac{\alpha}{3} + \frac{2}{3}(1-\alpha^{2}) + \frac{4\alpha^{2}}{9\mu} & \text{if } \frac{2\alpha}{3(1+\alpha)} \leq \mu \leq \frac{2}{3}, \\ \frac{2+\alpha}{3} & \text{if } \frac{2}{3} \leq \mu \leq \frac{2(2+\alpha)}{3(1+\alpha)}, \\ \mu(1+\alpha^{2}) - \frac{1}{3}(2+\alpha)(1+2\alpha) & \text{if } \mu \geq \frac{2(2+\alpha)}{3(1+\alpha)}. \end{cases}$$

All inequalities are sharp.

Proof: We first recall the Fekete-Szegö inequality for starlike functions (see Keogh and Merkes (1969), for example), which states that for g starlike in D,

$$|b_3 - \mu b_2^2| \le \text{Max} (1, |3 - 4\mu|),$$

where μ is any real number and where, b_2 and b_3 are coefficients of the starlike function g. Equating coefficients in (3), gives

$$\begin{aligned} \left|a_{3}-\mu a_{2}^{2}\right| &= \left|\frac{\alpha}{3}b_{3}-\frac{\alpha}{12}\left(2\left(1-\alpha\right)+3\alpha\mu\right)b_{2}^{2}+\frac{\alpha}{6}b_{2}c_{1}\left(2-3\mu\right)+\frac{1}{3}\left(c_{2}-\frac{3\mu}{4}c_{1}^{2}\right)\right| \\ &\leq \frac{\alpha}{3}\left|b_{3}-\frac{1}{4}\left(2(1-\alpha)+3\mu\right)\right|+\frac{\alpha}{3}\left|(2-3\mu)\right|\left|c_{1}\right| \\ &+\frac{1}{3}\left|c_{2}-\frac{1}{2}c_{1}^{2}\right|+\frac{1}{12}\left|2-3\mu\right|\left|c_{1}\right|^{2}. \end{aligned}$$

$$\tag{4}$$

(i) The case $\frac{2\alpha}{3(1+\alpha)} \le \mu \le \frac{2}{3}$. If $0 \le \mu \le \frac{2}{3}$, then $|3\alpha\mu - 2\alpha - 1| \ge 1$ and so using the well-known bound $|c_2 - \frac{1}{2}c_1^2| \le 2 - \frac{1}{2}|c_1|^2$ for $h \in P$, (4) gives

$$|a_{3} - \mu a_{2}^{2}| \leq \frac{\alpha}{3} |3\alpha\mu - 2\alpha - 1| + \frac{\alpha}{3} (2 - 3\mu)|c_{1}| + \frac{1}{3} (2 - \frac{1}{2}|c_{1}|^{2}) + \frac{1}{12} (2 - 3\mu)|c_{1}|^{2}.$$

Since $3\alpha\mu - 2\alpha - 1 \le 0$, when $0 \le \mu \le \frac{2}{3}$, we have

$$\begin{aligned} \left|a_{3}-\mu a_{2}^{2}\right| &\leq \frac{\alpha}{3}\left(1+2\alpha-3\alpha\mu\right)+\frac{\alpha}{3}\left(2-3\mu\right)\left|c_{1}\right|+\frac{1}{3}\left(2-\frac{1}{2}\left|c_{1}\right|^{2}\right)+\frac{1}{12}\left(2-3\mu\right)\left|c_{1}\right|^{2} \\ &= \frac{\alpha}{3}\left(1+2\alpha-3\alpha\mu\right)+\frac{\alpha}{3}\left(2-3\mu\right)\left|c_{1}\right|+\frac{2}{3}-\frac{\mu}{4}\left|c_{1}\right|^{2} \\ &= \Phi(x) \text{ say,} \end{aligned}$$

with $|c_1| = x$. It is easy to see that $\Phi(x)$ is maximum at $x_0 = \frac{2\alpha}{3\mu}(2-3\mu)$ and $\Phi(x_0) = \frac{\alpha}{3} + \frac{2}{3}(1-\alpha^2) + \frac{4\alpha^2}{9\mu}$, but since $x_0 \le 2$, we have $\mu \ge \frac{2\alpha}{3(1+\alpha)}$. Equality is attained when $c_1 = \frac{2\alpha}{3\mu}(2-3\mu)$, $c_2 = b_2 = 2$ and $b_3 = 3$.

(ii) The case $\mu \leq \frac{2\alpha}{3(1+\alpha)}$.

First note that the above shows that when $\mu = \frac{2\alpha}{3(1+\alpha)}$,

$$\left|a_{3}-\frac{2\alpha}{3(1+\alpha)}a_{2}^{2}\right|\leq\frac{2+3\alpha}{3},$$

and so writing

$$a_{3} - \mu a_{2}^{2} = \frac{3\mu(1+\alpha)}{2\alpha} \left(a_{3} - \frac{2\alpha}{3(1+\alpha)} a_{2}^{2} \right) + \left(1 - \frac{3\mu(1+\alpha)}{2\alpha} \right) a_{3},$$

and using the bound $|a_3| \le \frac{1}{3}(2+\alpha)(1+2\alpha)$ obtained from Theorem 1, we have $|a_3 - \mu a_2^2| \le \frac{1}{3}(2+\alpha)(1+2\alpha) - \mu(1+\alpha)^2.$

Equality is attained when $b_3 = 3$, $b_2 = c_1 = c_2 = 2$.

(iii) The case
$$\frac{2}{3} \le \mu \le \frac{2(2+\alpha)}{3(1+\alpha)}$$
.

Since Max $\{1, |3\alpha\mu - 2\alpha - 1|\} = 1$ on this interval,

D K Thomas

$$\begin{aligned} \left|a_{3}-\mu a_{2}^{2}\right| &\leq \alpha + \frac{2\alpha}{3}(3\mu-2)\left|c_{1}\right| + \frac{1}{3}\left(2-\frac{1}{2}\left|c_{1}\right|^{2}\right) + \frac{1}{12}(3\mu-2)\left|c_{1}^{2}\right| \\ &= \alpha + \frac{2\alpha}{3}(3\mu-2)x + \frac{1}{3}\left(2-\frac{1}{2}x^{2}\right) + \frac{1}{12}(3\mu-2)x^{2} \\ &= \Psi(x) \text{ say,} \end{aligned}$$

where again $x = |c_1|$. Since $\Psi'(x) = 0$ at $x_0 = \frac{2\alpha(3\mu - 2)}{4 - 3\mu}$, and $x_0 \le 2$, it follows that

$$\mu \le \frac{2(2+\alpha)}{3(1+\alpha)}$$
. We finally note that $\Psi(x_0) = \frac{2+\alpha}{3}$ and so the proof for $\frac{2}{3} \le \mu \le \frac{2(2+\alpha)}{3(1+\alpha)}$ is

complete. Equality is attained when $c_1 = b_2 = 0$, $c_2 = 2$ and $b_3 = 1$.

(iv) The case $\mu \ge \frac{2(2+\alpha)}{3(1+\alpha)}$.

Writing
$$a_3 - \mu a_2^2 = a_3 - \frac{2(2+\alpha)}{3(1+\alpha)}a_2^2 + \left(\frac{2(2+\alpha)}{3(1+\alpha)} - \mu\right)a_2^2$$

 $\left|a_3 - \mu a_2^2\right| \le \left|a_3 - \frac{2(2+\alpha)}{3(1+\alpha)}a_2^2\right| + \left(\mu - \frac{2(2+\alpha)}{3(1+\alpha)}\right)\left|a_2^2\right|$
 $\le \frac{2+\alpha}{3} + \left(\mu - \frac{2(2+\alpha)}{3(1+\alpha)}\right)(1+\alpha)^2 = \mu(1+\alpha)^2 - \frac{1}{3}(2+\alpha)(1+2\alpha)$

where we have used the bound $|a_2| \le 1 + \alpha$ obtained from Theorem 1. Choosing $b_2 = -2i$, $b_3 = -3$, $c_1 = 2i$ and $c_2 = -2$ shows that the inequality is sharp. \Box

,

We next define a related class C^{α} .

Definition 2. For $0 \le \alpha \le 1$, denote by C^{α} , the set of function f analytic in $z \in D = \{z : |z| < 1\}$ and given by (1) such that for some $g \in S^*$,

$$\operatorname{Re}\left\{\frac{z(zf'(z))'}{z^{1-\alpha}g(z)^{\alpha}}\right\} > 0,$$

which is equivalent to

$$\operatorname{Re}\left\{\frac{z(zf'(z))'}{(g(z)/z)^{\alpha}}\right\} > 0$$

and so $f \in C^{\alpha}$ if and only if, $zf' \in K^{\alpha}$.

Using the same methods as in the case of K^{α} it is easily established that $C^{\alpha} \subset C^*$, the set of quasi-convex functions first studied by Noor and Thomas (1980), and since $C^* \subset K$, functions in C^{α} are also close-to-convex and hence univalent.

We note that since $f \in C^{\alpha}$ if and only if, $zf' \in K^{\alpha}$, the coefficients of functions in C^{α} satisfy $n|a_n| \leq \gamma_n(\alpha)$ for $n \geq 2$.

Similar techniques as those employed in Theorem 3 gives the following Fekete-Szegö theorem, the proof of which we omit.

Theorem 4. Let $f \in C^{\alpha}$. Then

$$\begin{vmatrix} a_{3} - \mu a_{2}^{2} \end{vmatrix} \leq \begin{cases} \frac{1}{9}(2+\alpha)(1+2\alpha) - \frac{\mu}{4}(1+\alpha)^{2} & \text{if } \mu \leq \frac{8\alpha}{9(1+\alpha)}, \\ \frac{\alpha}{3} + \frac{2}{3}(1-\alpha^{2}) + \frac{16\alpha^{2}}{81\mu} & \text{if } \frac{8\alpha}{9(1+\alpha)} \leq \mu \leq \frac{8}{9}, \\ \frac{2+\alpha}{3} & \text{if } \frac{8}{9} \leq \mu \leq \frac{8(2+\alpha)}{9(1+\alpha)}, \\ \mu(1+\alpha^{2}) - \frac{1}{3}(2+\alpha)(1+2\alpha) & \text{if } \mu \geq \frac{8(2+\alpha)}{9(1+\alpha)}. \end{cases}$$

All inequalities are sharp.

References

Bazilevič I. E. 1955. On a case of integrability in quadratures of the Löwner-Kufarev equation. *Mat. Sb.* **37**(79): 471-476. (Russian) **MR 17**: 356.

Keogh F. R. & Merkes E. P. 1969. A coefficient inequality for certain classes of analytic functions. Proc. Amer. Math. Soc. 20: 8-12.

Klein M. 1968. On starlike functions of order alpha. Trans. Amer. Math. Soc. 131: 99-106.

Noor K. I. & Thomas D. K. 1980. Quasi convex univalent functions. *Int. Journal Math. & Math. Sci.* **3**(2): 255-266. Singh R. 1973. On Bazilevič functions. *Proc. Amer. Math. Soc.* **38**(2): 261-171.

Thomas D. K. 1985. On a subclass of Bazilevič functions. Int. Journal. Math. & Math. Sci. 8(4): 779-783.

Thomas D. K. 1991. In *New Trends in Geometric Function Theory and Applications*: 146-158. Singapore: World Scientific.

Department of Mathematics Swansea University Singleton Park Swansea, SA2 8PP UNITED KINGDOM E-mail: d.k.thomas@swansea.ac.uk*

^{*}Corresponding author