CLOSE-TO-CONVEX FUNCTIONS WITH STARLIKE POWERS
 (Fungsi Hampir Cembung dengan Kuasa Bak Bintang)

D K THOMAS

ABSTRACT

Let K^{α} be the set of functions f, analytic in $z \in D=\{z:|z|<1\}$ satisfying $\operatorname{Re}\left(\frac{f^{\prime}(z)}{(g(z) / \mathrm{z})^{\alpha}}\right)>0$, for g starlike in D and $0 \leq \alpha \leq 1$. It is shown that such functions form a subset of the close-to-convex functions. Sharp bounds for the coefficients are given and the Fekete-Szegö problem is solved.

Keywords: univalent functions; starlike functions; close-to-convex functions; coefficients; Fekete-Szegö

ABSTRAK

Andaikan K^{α} set fungsi f, analisis dalam $z \in D=\{z:|z|<1\} \quad$ memenuhi $N y\left(\frac{f^{\prime}(z)}{(g(z) / z)^{\alpha}}\right)>0$, untuk g bak bintang dalam D dan $0 \leq \alpha \leq 1$. Dapat ditunjukkan bahawa fungsi tersebut merupakan subset bagi suatu set fungsi hampir cembung. Batas-batas terbaik bagi pekali diberikan dan masalah Fekete-Szegö diselesaikan.

Kata kunci: fungsi univalen; fungsi bak bintang; fungsi hampir cembung; pekali; Fekete-Szegö

1. Introduction

Let S be the class of analytic normalised univalent functions f defined in $z \in D=\{z:|z|<1\}$ and given by

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} . \tag{1}
\end{equation*}
$$

Denote by S^{*} the subset of functions, starlike with respect to the origin and by K the subset of close-to-convex functions. Then $f \in S^{*}$, if and only if, for $z \in D=\{z:|z|<1\}$,

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>0
$$

and $f \in K$ if and only if, there exists $g \in S^{*}$ such that

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{g(z)}\right\}>0
$$

Hence $S^{*} \subset K \subset S$.
For $0 \leq \alpha \leq 1$, the subset $B(\alpha)$ of Bazilevič functions (1955) has been widely studied and is defined for $z \in D=\{z:|z|<1\}$ by

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)^{1-\alpha} g(z)^{\alpha}}\right\}>0
$$

for some $g \in S^{*}$.
In the original paper of Bazilevič (1995), it was shown that $B(\alpha) \subset S$. Taking $g(z) \equiv z$ gives the class $B_{1}(\alpha)$, which has been extensively studied e.g. Singh (1973), Thomas (1985) and Thomas (1991). We note that $B_{1}(0)$ is the well-known class R of functions whose derivative has positive real part in D.

Thus $f \in B_{1}(\alpha)$, if and only if

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)^{1-\alpha} z^{\alpha}}\right\}>0
$$

We choose a different route as follows.

2. Main Result

Definition 1. For $0 \leq \alpha \leq 1$, denote by K^{α}, the set of functions f analytic in $z \in D=\{z:|z|<1\}$ and given by (1) such that for some $g \in S^{*}$,

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{z^{1-\alpha} g(z)^{\alpha}}\right\}>0,
$$

which is equivalent to

$$
\operatorname{Re}\left\{\frac{f^{\prime}(z)}{(g(z) / z)^{\alpha}}\right\}>0 .
$$

Theorem 1. Let $f \in K^{\alpha}$. Then $f \in K$ and so is univalent for $z \in D=\{z:|z|<1\}$.
Proof: Let $G(z)=z(g(z) / z)^{\alpha}$. Then it is easily seen that $G \in S^{*}(1-\alpha)$ for $0<\alpha \leq 1$, where $S^{*}(1-\alpha)$ is the class of functions starlike of order $1-\alpha$. Thus $K^{\alpha} \subset K$ and so functions in K^{a} are univalent.

Theorem 2. Let $f \in K^{\alpha}$ and be given by (1) and F be defined for $z \in D=\{z:|z|<1\}$ by

$$
\begin{equation*}
F^{\prime}(z)=1+\sum_{n=1}^{\infty} n \gamma_{n}(\alpha) z^{n}=\frac{(1+z)}{(1-z)^{2 \alpha+1}}=\left(1+\sum_{k=1}^{\infty}\binom{2 \alpha+k-1}{k} z^{k}\right)\left(1+2 \sum_{k=1}^{\infty} z^{k}\right) \tag{2}
\end{equation*}
$$

with $\gamma_{1}(\alpha)=1$. Then $\left|a_{n}\right| \leq \gamma_{n}(\alpha)$ for $n \geq 2$, where $\gamma_{n}(\alpha) \sim \frac{2 n^{2 \alpha-1}}{\Gamma(2 \alpha+1)}$ as $n \rightarrow \infty$.
The inequality is sharp.
Proof: Write

$$
g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k}, \quad\left(\frac{g(z)}{z}\right)^{\alpha}=1+\sum_{k=1}^{\infty} B_{k}(\alpha) z^{k} \quad \text { and } \quad h(z)=1+\sum_{k=1}^{\infty} c_{k} z^{k},
$$

where $h \in P$, the class of functions whose derivative has positive real part in D. Then

$$
\begin{equation*}
f^{\prime}(z)=\left(\frac{g(z)}{z}\right)^{\alpha} h(z)=\left(1+\sum_{k=1}^{\infty} B_{k}(\alpha) z^{k}\right)\left(1+\sum_{k=1}^{\infty} c_{k} z^{k}\right) . \tag{3}
\end{equation*}
$$

Equating the coefficients, we obtain for $n \geq 2, n a_{n}=\sum_{i=0}^{n-1} B_{i}(\alpha) c_{n-1-i}$, where $B_{0}(\alpha)=c_{0}=1$.
A result of Klein (1968) shows that for $g \in S^{*}$ and $i \geq 1$,

$$
\left|B_{i}(\alpha)\right| \leq\left|\binom{-2 \alpha}{i}\right|=\binom{2 \alpha+i-1}{i}
$$

and so using the well-known inequality $\left|c_{n}\right| \leq 2$ for $h \in P$ and comparing the coefficients in (2) and (3), the result follows.

We note that elementary analysis shows that $\gamma_{n}(\alpha) \sim \frac{2 n^{2 \alpha-1}}{\Gamma(2 \alpha+1)}$ as $n \rightarrow \infty$.
Theorem 1 gives the inequalities $\left|a_{2}\right| \leq 1+\alpha$ and $\left|a_{3}\right| \leq \frac{1}{3}\left(2 \alpha^{2}+5 \alpha+2\right)$, which we will use in the following theorem.

We now solve the Fekete-Szegö problem for functions in K^{α}, noting that when $\alpha=1$ we obtain the classical result of Keogh and Merkes (1969).

Theorem 3. Let $f \in K^{\alpha}$. Then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}\frac{1}{3}(2+\alpha)(1+2 \alpha)-\mu(1+\alpha)^{2} & \text { if } \mu \leq \frac{2 \alpha}{3(1+\alpha)} \\ \frac{\alpha}{3}+\frac{2}{3}\left(1-\alpha^{2}\right)+\frac{4 \alpha^{2}}{9 \mu} & \text { if } \frac{2 \alpha}{3(1+\alpha)} \leq \mu \leq \frac{2}{3} \\ \frac{2+\alpha}{3} & \text { if } \frac{2}{3} \leq \mu \leq \frac{2(2+\alpha)}{3(1+\alpha)} \\ \mu\left(1+\alpha^{2}\right)-\frac{1}{3}(2+\alpha)(1+2 \alpha) & \text { if } \mu \geq \frac{2(2+\alpha)}{3(1+\alpha)} .\end{cases}
$$

All inequalities are sharp.
Proof: We first recall the Fekete-Szegö inequality for starlike functions (see Keogh and Merkes (1969), for example), which states that for g starlike in D,

$$
\left|b_{3}-\mu b_{2}^{2}\right| \leq \operatorname{Max}(1,|3-4 \mu|)
$$

where μ is any real number and where, b_{2} and b_{3} are coefficients of the starlike function g. Equating coefficients in (3), gives

$$
\begin{align*}
\left|a_{3}-\mu a_{2}^{2}\right|= & \left|\frac{\alpha}{3} b_{3}-\frac{\alpha}{12}(2(1-\alpha)+3 \alpha \mu) b_{2}^{2}+\frac{\alpha}{6} b_{2} c_{1}(2-3 \mu)+\frac{1}{3}\left(c_{2}-\frac{3 \mu}{4} c_{1}^{2}\right)\right| \\
\leq & \frac{\alpha}{3}\left|b_{3}-\frac{1}{4}(2(1-\alpha)+3 \mu)\right|+\frac{\alpha}{3}\left|(2-3 \mu) \| c_{1}\right| \\
& +\frac{1}{3}\left|c_{2}-\frac{1}{2} c_{1}^{2}\right|+\frac{1}{12}\left|2-3 \mu \| c_{1}\right|^{2} . \tag{4}
\end{align*}
$$

(i) The case $\frac{2 \alpha}{3(1+\alpha)} \leq \mu \leq \frac{2}{3}$.

If $0 \leq \mu \leq \frac{2}{3}$, then $|3 \alpha \mu-2 \alpha-1| \geq 1$ and so using the well-known bound $\left|c_{2}-\frac{1}{2} c_{1}^{2}\right| \leq 2-\frac{1}{2}\left|c_{1}\right|^{2}$ for $h \in P$, (4) gives

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{\alpha}{3}|3 \alpha \mu-2 \alpha-1|+\frac{\alpha}{3}(2-3 \mu)\left|c_{1}\right|+\frac{1}{3}\left(2-\frac{1}{2}\left|c_{1}\right|^{2}\right)+\frac{1}{12}(2-3 \mu)\left|c_{1}\right|^{2} .
$$

Since $3 \alpha \mu-2 \alpha-1 \leq 0$, when $0 \leq \mu \leq \frac{2}{3}$, we have

$$
\begin{aligned}
\left|a_{3}-\mu a_{2}^{2}\right| & \leq \frac{\alpha}{3}(1+2 \alpha-3 \alpha \mu)+\frac{\alpha}{3}(2-3 \mu)\left|c_{1}\right|+\frac{1}{3}\left(2-\frac{1}{2}\left|c_{1}\right|^{2}\right)+\frac{1}{12}(2-3 \mu)\left|c_{1}\right|^{2} \\
& =\frac{\alpha}{3}(1+2 \alpha-3 \alpha \mu)+\frac{\alpha}{3}(2-3 \mu)\left|c_{1}\right|+\frac{2}{3}-\frac{\mu}{4}\left|c_{1}\right|^{2} \\
& =\Phi(x) \text { say }
\end{aligned}
$$

with $\left|c_{1}\right|=x$. It is easy to see that $\Phi(x)$ is maximum at $x_{0}=\frac{2 \alpha}{3 \mu}(2-3 \mu)$ and $\Phi\left(x_{0}\right)=\frac{\alpha}{3}+\frac{2}{3}\left(1-\alpha^{2}\right)+\frac{4 \alpha^{2}}{9 \mu}$, but since $x_{0} \leq 2$, we have $\mu \geq \frac{2 \alpha}{3(1+\alpha)}$. Equality is attained when $c_{1}=\frac{2 \alpha}{3 \mu}(2-3 \mu), c_{2}=b_{2}=2$ and $b_{3}=3$.
(ii) The case $\mu \leq \frac{2 \alpha}{3(1+\alpha)}$.

First note that the above shows that when $\mu=\frac{2 \alpha}{3(1+\alpha)}$,

$$
\left|a_{3}-\frac{2 \alpha}{3(1+\alpha)} a_{2}^{2}\right| \leq \frac{2+3 \alpha}{3},
$$

and so writing

$$
a_{3}-\mu a_{2}^{2}=\frac{3 \mu(1+\alpha)}{2 \alpha}\left(a_{3}-\frac{2 \alpha}{3(1+\alpha)} a_{2}^{2}\right)+\left(1-\frac{3 \mu(1+\alpha)}{2 \alpha}\right) a_{3},
$$

and using the bound $\left|a_{3}\right| \leq \frac{1}{3}(2+\alpha)(1+2 \alpha)$ obtained from Theorem 1, we have

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{1}{3}(2+\alpha)(1+2 \alpha)-\mu(1+\alpha)^{2} .
$$

Equality is attained when $b_{3}=3, b_{2}=c_{1}=c_{2}=2$.
(iii) The case $\frac{2}{3} \leq \mu \leq \frac{2(2+\alpha)}{3(1+\alpha)}$.

Since $\operatorname{Max}\{1,|3 \alpha \mu-2 \alpha-1|\}=1$ on this interval,

$$
\begin{aligned}
\left|a_{3}-\mu a_{2}^{2}\right| & \leq \alpha+\frac{2 \alpha}{3}(3 \mu-2)\left|c_{1}\right|+\frac{1}{3}\left(2-\frac{1}{2}\left|c_{1}\right|^{2}\right)+\frac{1}{12}(3 \mu-2)\left|c_{1}^{2}\right| \\
& =\alpha+\frac{2 \alpha}{3}(3 \mu-2) x+\frac{1}{3}\left(2-\frac{1}{2} x^{2}\right)+\frac{1}{12}(3 \mu-2) x^{2} \\
& =\Psi(x) \text { say, }
\end{aligned}
$$

where again $x=\left|c_{1}\right|$. Since $\Psi^{\prime}(x)=0$ at $x_{0}=\frac{2 \alpha(3 \mu-2)}{4-3 \mu}$, and $x_{0} \leq 2$, it follows that $\mu \leq \frac{2(2+\alpha)}{3(1+\alpha)}$. We finally note that $\Psi\left(x_{0}\right)=\frac{2+\alpha}{3}$ and so the proof for $\frac{2}{3} \leq \mu \leq \frac{2(2+\alpha)}{3(1+\alpha)}$ is complete. Equality is attained when $c_{1}=b_{2}=0, c_{2}=2$ and $b_{3}=1$.
(iv) The case $\mu \geq \frac{2(2+\alpha)}{3(1+\alpha)}$.

Writing $a_{3}-\mu a_{2}^{2}=a_{3}-\frac{2(2+\alpha)}{3(1+\alpha)} a_{2}^{2}+\left(\frac{2(2+\alpha)}{3(1+\alpha)}-\mu\right) a_{2}^{2}$

$$
\begin{aligned}
& \left|a_{3}-\mu a_{2}^{2}\right| \leq\left|a_{3}-\frac{2(2+\alpha)}{3(1+\alpha)} a_{2}^{2}\right|+\left(\mu-\frac{2(2+\alpha)}{3(1+\alpha)}\right)\left|a_{2}^{2}\right| \\
& \leq \frac{2+\alpha}{3}+\left(\mu-\frac{2(2+\alpha)}{3(1+\alpha)}\right)(1+\alpha)^{2}=\mu(1+\alpha)^{2}-\frac{1}{3}(2+\alpha)(1+2 \alpha),
\end{aligned}
$$

where we have used the bound $\left|a_{2}\right| \leq 1+\alpha$ obtained from Theorem 1. Choosing $b_{2}=-2 i$, $b_{3}=-3, c_{1}=2 i$ and $c_{2}=-2$ shows that the inequality is sharp.

We next define a related class C^{α}.
Definition 2. For $0 \leq \alpha \leq 1$, denote by C^{α}, the set of function f analytic in $z \in D=\{z:|z|<1\}$ and given by (1) such that for some $g \in S^{*}$,

$$
\operatorname{Re}\left\{\frac{z\left(z f^{\prime}(z)\right)^{\prime}}{z^{1-\alpha} g(z)^{\alpha}}\right\}>0,
$$

which is equivalent to

$$
\operatorname{Re}\left\{\frac{z\left(z f^{\prime}(z)\right)^{\prime}}{(g(z) / z)^{\alpha}}\right\}>0
$$

and so $f \in C^{\alpha}$ if and only if, $z f^{\prime} \in K^{\alpha}$.
Using the same methods as in the case of K^{α} it is easily established that $C^{\alpha} \subset C^{*}$, the set of quasi-convex functions first studied by Noor and Thomas (1980), and since $C^{*} \subset K$, functions in C^{α} are also close-to-convex and hence univalent.

We note that since $f \in C^{\alpha}$ if and only if, $z f^{\prime} \in K^{\alpha}$, the coefficients of functions in C^{α} satisfy $n\left|a_{n}\right| \leq \gamma_{n}(\alpha)$ for $n \geq 2$.

Similar techniques as those employed in Theorem 3 gives the following Fekete-Szegö theorem, the proof of which we omit.

Theorem 4. Let $f \in C^{\alpha}$. Then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}\frac{1}{9}(2+\alpha)(1+2 \alpha)-\frac{\mu}{4}(1+\alpha)^{2} & \text { if } \mu \leq \frac{8 \alpha}{9(1+\alpha)}, \\ \frac{\alpha}{3}+\frac{2}{3}\left(1-\alpha^{2}\right)+\frac{16 \alpha^{2}}{81 \mu} & \text { if } \frac{8 \alpha}{9(1+\alpha)} \leq \mu \leq \frac{8}{9} \\ \frac{2+\alpha}{3} & \text { if } \frac{8}{9} \leq \mu \leq \frac{8(2+\alpha)}{9(1+\alpha)} \\ \mu\left(1+\alpha^{2}\right)-\frac{1}{3}(2+\alpha)(1+2 \alpha) & \text { if } \mu \geq \frac{8(2+\alpha)}{9(1+\alpha)} .\end{cases}
$$

All inequalities are sharp.

References

Bazilevič I. E. 1955. On a case of integrability in quadratures of the Löwner-Kufarev equation. Mat. Sb. 37(79): 471-476. (Russian) MR 17: 356.
Keogh F. R. \& Merkes E. P. 1969. A coefficient inequality for certain classes of analytic functions. Proc. Amer. Math. Soc. 20: 8-12.
Klein M. 1968. On starlike functions of order alpha. Trans. Amer. Math. Soc. 131: 99-106.
Noor K. I. \& Thomas D. K. 1980. Quasi convex univalent functions. Int. Journal Math. \& Math. Sci. 3(2): 255-266. Singh R. 1973. On Bazilevič functions. Proc. Amer. Math. Soc. 38(2): 261-171.
Thomas D. K. 1985. On a subclass of Bazilevič functions. Int. Journal. Math. \& Math. Sci. 8(4): 779-783.
Thomas D. K. 1991. In New Trends in Geometric Function Theory and Applications: 146-158. Singapore: World Scientific.

Department of Mathematics
Swansea University
Singleton Park
Swansea, SA2 8PP
UNITED KINGDOM
E-mail: d.k.thomas@swansea.ac.uk*

[^0]
[^0]: *Corresponding author

