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ABSTRACT 

In this paper, some inequalities connected with the left and right hand side of Hermite-

Hadamard type inequalities are established for functions whose the first and second 

derivatives absolute values are quasi-convex. 
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ABSTRAK 

Dalam makalah ini, beberapa ketaksamaan bersabit dengan  ketaksamaam jenis Hermite-

Hadamard sebelah kiri dan kanan diperoleh untuk fungsi yang nilai mutlak terbitan peringkat 

pertama dan keduanya adalah fungsi kuasi-cembung.  

Kata kunci: ketaksamaan Hermite-Hadamard; fungsi-cembung; fungsi kuasi-cembung    

          

1. Introduction 

Let I be an interval of real numbers. A function  :f I    is said to be convex  on  I  if the 

inequality 

 

 (1 ) ( ) (1 t) ( )f tx t y tf x f y                                 (1) 

 

holds for  all ,x y I  and [0,1]t . If the inequality  (1) is reversed,  then f  is said to be 

concave. 

 The following double inequality, 

 

1 ( ) ( )
( )

2 2

b

a

a b f a f a
f f x dx

b a

  
  

 
                              (2) 

 
is well known in the literature as the Hermite-Hadamard integral inequality (see Dragomir & 

Agarwal 1998), which provides the estimates of the mean value of a continuous convex 

function defined on an real interval [ , ]a b  with a b . Inequality (2) has attracted many 

researchers over the years to demostrate new proofs, refinements, extensions and  

generalization, see for instance Niculescu and Persson (2003), Ciurdariu (2012),  Iscan 

(2013), González et al. (2015), Khan et al. (2018)  and the references cited therein. 

 
Definition 1.1.  A function :f I    is said to be quasi-convex  on I  if 

 

   (1 ) max ( ), ( )f tx t y f x f y                                         (3) 
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holds for all ,x y I and [0,1]t . If  f  is quasi-concave, then inequality (3) is reversed.  

Dragomir and Argawal (1998), Pearce and Pěcarić (2000), Sarikaya and Aktan (2011) 

provided the inequalities connected with the right part of (3) for functions whose first and 

second derivatives are convex.  Similar results also have been establised by Ion (2007) and 

Alomari et al. (2010) for the class of functions whose derivatives absolute values are quasi-

convex, where some of the results are pointed out as follows. 

 

Theorem 1.1.  (Ion 2007) Assume ,a b  with a b   and : [ , ]f a b   is a differentiable 

function on  ( , ),a b  then we have the inequalities 
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Theorem 1.2.  (Alomari et al. 2010)  Let :f I    be a twice differentiable function on 

the interior points of  I,  ,a b I  with a b  and  f   be integrable on [ , ]a b . Then we have 
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Theorem 1.3.  (Alomari et al. 2010) Let  [ , ]L a b  be class of continuous functions defined on  

[ , ]a b . Let : [0, )f I     be a differentiable function on I such that [ , ]f L a b , where 

,a b I  with a b . If  1 , 1
p

pf p   is quasi-convex on [ , ]a b . Then we have 
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The main purpose of this study  is to provide some more inequalities related with  the 

Hermite-Hadamard type inequality for twice differentiable functions whose the absolute 

values of the first and second derivatives are quasi-convex. In particular, we generalise the 

result of Ion (2007). 

2. Some  Inequalities of  Hermite-Hadamard Type for Quasi-Convex Functions 

In order to prove our main results, we need the following integral equalities.  

 

Lemma 2.1.  (Iqbal et al. 2012) Let :f I    be differentiable funtcion on the interior 

points of  I, where ,a b I with a b .  If [ , ]f L a b  and , [0, )    with  0   , then 

 

( ) ( ) 1
( )

b

a

f a f b
f x dx

b a

 

 




     

              
2

0 0

( ) t
( )

b a t t t t
t f a b dt f a b dt

 
   

         

        
         

        
      (9) 

 

Lemma 2.2.  (Xi & Qi 2013) Let :f I    be a twice differentiable function on the 

interior points of  I and R .  If [ , ]f L a b  where ,a b I with a b , then 

 

( ) ( ) 1
(1 ) ( )

2 2

b

a

f a f b a b
f f x dx

b a
 

  
   

 
  

            

12

0

( )
(2 ) (1 ) (1 )

16 2 2

b a a b a b
t t f t a t f t t b dt

      
           
    

 .         (10) 

 

Lemma 2.3.  (Xi & Qi 2013) Let 0 1  , [0,1]t  and 1r   . Then, 
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We are now in a position to establish some new integral inequalities of Hermite-Hadamard 

type for  twice differentiable  and quasi-convex functions. 

 

Theorem 2.1.  Assume ,a b  with a b and : [ , ]f a b  is a differentiable function on 

( , )a b .  Then for , [0, )    with  0   ,  the following inequalities hold true 
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b

a

f a f b
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Proof.  By Lemma 2.1 with  the fact that f   is a quasi-convex function on [ , ]a b  and  some 

elementary integration culculus we have 
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Also, from Lemma 2.1 and applying the weighted  Hölder integral inequality, one obtains 
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where  1p   with  1 1 1
p q
  .  Using the fact that 

q
f   is quasi convex function on [ , ]a b ,  

then we have 
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. 

The proof of  Theorem 2.1 is completed.  

 

Remark 2.1.   If  in Theorem 2.1 we choose 1   , then we recapture the Ion’s results 

(4) and (5). 

 

Theorem 2.2.  Assume ,a b  with a b and : [ , ]f a b   is a twice differentiable 

function on [ , ]a b  such that ( )f x  is integrable.  If  f   and  1 ( 1)
p

pf p   are quasi-convex 

functions on [ , ]a b , then for 0 1  ,  the following inequalities hold true: 
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Proof:  From  Lemma 2.2  we have 
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Since f   is a quasi convex function on [ , ]a b , thus from (18) we get 
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where from Lemma 2.3 we have that   
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Hence, we obtain  the desired result (14). 

Agains, from  Lemma 2.2  and  applying the  weighted  Hölder’s  inequality for integrals, 

we have 
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where ( )pH   as given  in (17). Thus, we complete the proof of Theorem 2.2.  
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