SECOND HANKEL DETERMINANT FOR A SUBCLASS OF ANALYTIC FUNCTIONS INVOLVING Q-ANALOGUE OF RUSCHEWEYH OPERATOR

(Penentu Hankel Kedua untuk Subkelas Fungsi Analisis Melibatkan Pengoperasi Ruscheweyh Analog-q)

SUHILA ELHADDAD \& MASLINA DARUS*

ABSTRACT

Let S be the class of analytic functions which are univalent and normalised in the open unit $\operatorname{disc} U=\{z \in \mathbb{C}:|z|<1\}$. Second Hankel determinant of $\left|a_{2} a_{4}-a_{3}^{2}\right|$ for a class of analytic functions involving q-analoque of Ruscheweyh operator is given.
Keywords: q-analogue of Ruscheweyh Operator; Fekete-Szego functional; Hankel determinant

ABSTRAK

Andaikan S sebagai kelas fungsi analisis yang univalen dan ternormal dalam cakera unit terbuka $U=\{z \in \mathbb{C}:|z|<1\}$. Diberi penentu Hankel kedua $\left|a_{2} a_{4}-a_{3}^{2}\right|$ untuk kelas fungsi analisis yang melibatkan analog- q bagi pengoperasi Ruscheweyh.
Kata kunci: Pengoperasi Ruscheweyh analog-q; fungsian Fekete-Szego; penentu Hankel

1. Introduction

The function class is denoted by \mathcal{A} which represented by the following form:

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}, \quad(z \in U) \tag{1}
\end{equation*}
$$

that are analytic in $U=\{z \in \mathbb{C}:|z|<1\}$ and satisfy the following normalization conditions $f(0)=0$ and $f^{\prime}(0)=1$. In addition, let $S \subset \mathcal{A}$ be the class of functions which are univalent in U.

Geometric Function Theory includes the study of a numeral of subclasses within normalised analytic function, using varied approaches. Both q-calculus and fractional q-calculus are significant methods for examining a range of \mathcal{A} subclasses. Srivastava and Owa (1989) was the first to provide a clear basis for using q-calculus within Geometric Function Theory, and to apply the fundamental q-hypergeometric functions in this theory. Further, univalent function theory is possible to describe by applying q-calculus theory, and more recently the application of a fractional q-derivative operator and fractional q-integral operator has been seen in creating a number of analytic function subclasses (e.g. in Aldweby and Darus (2013; 2014); Elhaddad et al. (2018); Elhaddad and Darus (2019); Mahmood et al. (2019); Purohit and Raina (2011; 2013)). Purohit and Raina (2013), for example, examined the use of fractional q-calculus operators in defining a number of analytic function classes for U as an open unit disk. Meanwhile, Mohammed and Darus (2013) evaluated q-operator characteristics in terms of geometry and approximation with reference to particular analytic function subclasses within
compact disks. A more complete treatment of applied q-analysis within the theory of operators may be found in Aral et al. (2013) and Exton (1983).

This work starts by defining key terms and detailed concepts within the q-calculus applied here. For the purposes of the report, the following assumption is made: $0<q<1$. Firstly, fractional q-calculus operators for a function with complex values $f(z)$ are defined below:

Definition 1.1. The q-number $[k]_{q}$ is defined by

$$
[k]_{q}= \begin{cases}\frac{1-q^{k}}{1-q}, & k \in \mathbb{C}, \\ \sum_{n=0}^{m-1} q^{n}=1+q+q^{2}+\ldots+q^{m-1} & k=m \in \mathbb{N} .\end{cases}
$$

Definition 1.2. The q-factorial $[k]_{q}!$ is defined by

$$
[k]_{q}!= \begin{cases}(1+q) \ldots\left(1+q+\ldots+q^{k-1}\right), & k=1,2, \ldots \tag{2}\\ 1, & k=0\end{cases}
$$

Definition 1.3. (Jackson 1908; 1910) The q-derivative operator D_{q} of a function f is determined by

$$
D_{q} f(z)= \begin{cases}\frac{f(q z)-f(z)}{(q-1) z}, & z \neq 0 \tag{3}\\ f^{\prime}(z) . & z=0\end{cases}
$$

We note from Definition 1.3 that

$$
\lim _{q \rightarrow 1^{-}}\left(D_{q} f\right)(z)=\lim _{q \rightarrow 1^{-}} \frac{f(z q)-f(z)}{(q-1) z}=f^{\prime}(z) .
$$

From (1) and (3), we get

$$
D_{q} f(z)=1+\sum_{k=2}^{\infty}[k]_{q} a_{k} z^{k-1} .
$$

Aldweby and Darus (2014) defined the q-analogue of Ruscheweyh Operator \mathcal{R}_{q}^{δ} by

$$
\mathcal{R}_{q}^{\delta} f(z)=z+\sum_{k=2}^{\infty} \frac{[k+\delta-1]_{q}!}{[\delta]_{q}![k-1]_{q}!} a_{k} z^{k},
$$

where $\delta \geq 0$ and $[k]_{q}$! is defined by (2).
Also, as $q \rightarrow 1^{-}$we have

$$
\lim _{q \rightarrow 1^{-}} \mathcal{R}_{q}^{\delta} f(z)=z+\lim _{q \rightarrow 1^{-}}\left[\sum_{k=2}^{\infty} \frac{[k+\delta-1]_{q}!}{[\delta]_{q}![k-1]_{q}!} a_{k} z^{k}\right]=z+\sum_{k=2}^{\infty} \frac{[k+\delta-1]!}{[\delta]![k-1]!} a_{k} z^{k}=\mathcal{R}^{\delta} f(z)
$$

where $\mathcal{R}^{\delta} f(z)$ is Ruscheweyh differential operator described by Ruscheweyh (1975) and studied by several authors, for example Mogra (1999), and Shukla and Kumar (1983).

Noonan and Thomas (1976) examined the following $q^{\text {th }}$ Hankel determinant

$$
H_{q}(r)=\left|\begin{array}{cccc}
a_{r} & a_{r+1} & \ldots & a_{r+q-1} \tag{4}\\
a_{r+1} & a_{r+2} & \ldots & a_{r+q} \\
: & : & : & : \\
a_{r+q-1} & a_{r+q} & \ldots & a_{r+2 q-2}
\end{array}\right|
$$

in which $r \geq 1$ and $q \geq 1$. This determinant has been the subject of study by a range of researchers. Specifically, a number of works provided sharp upper limits for $H_{2}(2)$ (e.g. Abubaker and Darus (2011); Bansal (2013); Janteng et al. (2006; 2007); Mohammed and Darus (2012); Pommerenke (1966; 1967); Raducanu and Zaprawab (2017) and Srivastava et al. (2018)) in a range of normalised analytic function classes. Fekete-Szego functional is wellestablished as $\left|a_{3}-a_{2}^{2}\right|=H_{2}(1)$, which is generalisable to $\left|a_{3}-\mu a_{2}^{2}\right|$ to certain real and complex μ. Further, sharp estimation were provided by Fekete and Szego for $\left|a_{3}-\mu a_{2}^{2}\right|$ in real μ as well as $f \in S$, representing U 's normalised univalent function class. This effectively combines two coefficients describing area problems as Gronwall previously put forward in $1914 / 15$. Further, $\left|a_{2} a_{4}-a_{3}^{2}\right|$ as the functional has equivalence with $H_{2}(2)$. For the current analysis, $H_{2}(2)$ Hankel determinant upper bounds are determined for an analytic function subclass through the following:

Definition 1.4. Let $f \in \mathcal{A}$. Then f is said to be within the class $R_{q}(\delta)$ if it is satisfied the condition

$$
\begin{equation*}
\operatorname{Re}\left\{D_{q}\left(\mathcal{R}_{q}^{\delta} f(z)\right)\right\}>0 \quad z \in U \tag{5}
\end{equation*}
$$

Note that, when $\delta=0$ and $q \rightarrow 1^{-}$the class $R_{q}(\delta)$ is reduced to the class studied by MacGregor (1962) and Janteng et al. (2006).

Following preliminary results are required to prove and validate the above results.

2. Preliminaries

Let \mathcal{P} be the family of all functions p analytic in U for which $\operatorname{Re}\{p(z)\}>0$ and

$$
\begin{equation*}
p(z)=1+c_{1} z+c_{2} z^{2}+\ldots \ldots \tag{6}
\end{equation*}
$$

Lemma 2.1. (Duren 1983) Let p within the class \mathcal{P}, then $\left|c_{k}\right| \leq 2$ for each $k \in \mathbb{N}$.

Lemma 2.2. (Libera \& Zlotkiewicz 1982; 1983) Let $p \in \mathcal{P}$ be given by (6). Then

$$
\begin{equation*}
2 c_{2}=c_{1}^{2}+\left(4-c_{1}^{2}\right) x \tag{7}
\end{equation*}
$$

for some $x,|x|<1$, and

$$
\begin{equation*}
4 c_{3}=c_{1}^{3}+\left(4-c_{1}^{2}\right) 2 c_{1} x-\left(4-c_{1}^{2}\right) c_{1} x^{2}+2\left(4-c_{1}^{2}\right)\left(1-|x|^{2}\right) z \tag{8}
\end{equation*}
$$

for some $z,|z|<1$.

3. Main results

Theorem 3.1. Let $f \in R_{q}(\delta)$. Then

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{4[2]_{q}^{2}}{[3]_{q}^{2}[\delta+1]_{q}^{2}[\delta+2]_{q}^{2}}
$$

Proof. Since $f \in R_{q}(\delta)$, then from (5) we have

$$
\begin{equation*}
D_{q}\left(\mathcal{R}_{q}^{\delta} f(z)\right)=p(z) \tag{9}
\end{equation*}
$$

By replacing $\mathcal{R}_{q}^{\delta} f(z)$ and $p(z)$ with their series in (9), we get

$$
\begin{equation*}
1+\sum_{k=2}^{\infty} \frac{[k+\delta-1]_{q}!}{[\delta]_{q}![k-1]_{q}!}[k]_{q} a_{k} z^{k-1}=1+\sum_{k=1}^{\infty} c_{k} z^{k} \tag{10}
\end{equation*}
$$

Equating the coefficients on both side of (10) yields

$$
\left\{\begin{array}{l}
a_{2}=\frac{c_{1}}{[2]_{q}[\delta+1]_{q}}, \tag{11}\\
a_{3}=\frac{[2]_{q} c_{2}}{[3]_{q}[\delta+1]_{q}[\delta+2]_{q}}, \\
a_{4}=\frac{[2]_{q}[3]_{q} c_{3}}{[4]_{q}[\delta+1]_{q}[\delta+2]_{q}[\delta+3]_{q}} .
\end{array}\right.
$$

From (11), we observe the following

$$
\begin{equation*}
\left|a_{2} a_{4}-a_{3}^{2}\right|=\frac{1}{[\delta+1]_{q}^{2}[\delta+2]_{q}}\left|\frac{[3]_{q} c_{1} c_{3}}{[4]_{q}[\delta+3]_{q}}-\frac{[2]_{q}^{2} c_{2}^{2}}{[3]_{q}^{2}[\delta+2]_{q}}\right| . \tag{12}
\end{equation*}
$$

Since $p(z)$ is within \mathcal{P} concurrently, we suppose that c_{1} is greater than zero without the loss of generality. For accessibility of notation, take $c_{1}=c \quad(c \in[0,2])$. By means of substituting the values of c_{1} and c_{2} respectively, from (7) and (8), we have

$$
\begin{aligned}
\left|a_{2} a_{4}-a_{3}^{2}\right|= & \frac{1}{4[\delta+1]_{q}^{2}[\delta+2]_{q}} \left\lvert\, \frac{[3]_{q}}{[4]_{q}[\delta+3]_{q}}\left\{c^{4}+2 c^{2}\left(4-c^{2}\right) x-c^{2}\left(4-c^{2}\right) x^{2}+2 c\left(4-c^{2}\right)\left(1-|x|^{2}\right) z\right\}\right. \\
& \left.-\frac{[2]_{q}^{2}}{[3]_{q}^{2}[\delta+2]_{q}}\left\{c^{4}+2 c^{2}\left(4-c^{2}\right) x+\left(4-c^{2}\right)^{2} x^{2}\right\} \right\rvert\, \\
= & \frac{1}{4[\delta+1]_{q}^{2}[\delta+2]_{q}} \left\lvert\,\left(\frac{[3]_{q}}{[4]_{q}[\delta+3]_{q}}-\frac{[2]_{q}^{2}}{[3]_{q}^{2}[\delta+2]_{q}}\right) c^{4}\right. \\
& +\left(\frac{[3]_{q}}{[4]_{q}[\delta+3]_{q}}-\frac{[2]_{q}^{2}}{[3]_{q}^{2}[\delta+2]_{q}}\right) 2 c^{2}\left(4-c^{2}\right) x \\
& \left.-\left(\frac{[3]_{q} c^{2}}{[4]_{q}[\delta+3]_{q}}+\frac{[2]_{q}^{2}\left(4-c^{2}\right)}{[3]_{q}^{2}[\delta+2]_{q}}\right)\left(4-c^{2}\right) x^{2}+\frac{2[3]_{q} c\left(4-c^{2}\right)\left(1-|x|^{2}\right) z}{[4]_{q}[\delta+3]_{q}} \right\rvert\, .
\end{aligned}
$$

By using triangle inequality, $|z| \leq 1$ and replacement of $|x|$ by v, we get

$$
\begin{align*}
\left|a_{2} a_{4}-a_{3}^{2}\right|= & \frac{1}{4[\delta+1]_{q}^{2}[\delta+2]_{q}}\left\{\left(\frac{[3]_{q}}{[4]_{q}[\delta+3]_{q}}-\frac{[2]_{q}^{2}}{[3]_{q}^{2}[\delta+2]_{q}}\right) c^{4}\right. \\
& +\left(\frac{[3]_{q}}{[4]_{q}[\delta+3]_{q}}-\frac{[2]_{q}^{2}}{[3]_{q}^{2}[\delta+2]_{q}}\right) 2 c^{2}\left(4-c^{2}\right) v \\
& \left.+\left(\frac{[3]_{q} c^{2}}{[4]_{q}[\delta+3]_{q}}+\frac{[2]_{q}^{2}\left(4-c^{2}\right)}{[3]_{q}^{2}[\delta+2]_{q}}\right)\left(4-c^{2}\right) v^{2}+\frac{2[3]_{q} c\left(4-c^{2}\right)\left(1-v^{2}\right)}{[4]_{q}[\delta+3]_{q}}\right\} \\
= & \frac{1}{4[\delta+1]_{q}^{2}[\delta+2]_{q}}\left\{\left(\frac{[3]_{q}}{[4]_{q}[\delta+3]_{q}}-\frac{[2]_{q}^{2}}{[3]_{q}^{2}[\delta+2]_{q}}\right) c^{4}\right. \\
& +\left(\frac{[3]_{q}}{[4]_{q}[\delta+3]_{q}}-\frac{[2]_{q}^{2}}{[3]_{q}^{2}[\delta+2]_{q}}\right) 2 c^{2}\left(4-c^{2}\right) v \\
& \left.+\left(\frac{[3]_{q} c(c-2)}{[4]_{q}[\delta+3]_{q}}+\frac{[2]_{q}^{2}\left(4-c^{2}\right)}{[3]_{q}^{2}[\delta+2]_{q}}\right)\left(4-c^{2}\right) v^{2}+\frac{2[3]_{q} c\left(4-c^{2}\right)}{[4]_{q}[\delta+3]_{q}}\right\} \\
& =H(c, v), \tag{13}
\end{align*}
$$

where $v=|x| \leq 1$ and $0 \leq c \leq 2$.
We next maximize the function $H(c, v)$ on $[0,2] \times[0,1]$. Differentiating $H(c, v)$ in (13) partially with respect to v, yields

$$
\begin{aligned}
\frac{\partial H(c, v)}{\partial v} & =\frac{1}{4[1+\delta]_{q}^{2}[2+\delta]_{q}}\left\{\left(\frac{[3]_{q}}{[4]_{q}[\delta+3]_{q}}-\frac{[2]_{q}^{2}}{[3]_{q}^{2}[\delta+2]_{q}}\right) 2 c^{2}\left(4-c^{2}\right)\right. \\
& \left.+\left(\frac{[3]_{q} c(c-2)}{[4]_{q}[\delta+3]_{q}}+\frac{[2]_{q}^{2}\left(4-c^{2}\right)}{[3]_{q}^{2}[\delta+2]_{q}}\right) 2\left(4-c^{2}\right) v\right\} .
\end{aligned}
$$

It is clear that $\frac{\partial H(c, v)}{\partial v} \geq 0$. This means that H is an increasing function of v. Then $H(c, v)$ can not have a maximum in the interior of $[0,2] \times[0,1]$. Furthermore, for fixed $c \in[0,2]$.

$$
\max _{0 \leq v \leq 1} H(c, v)=H(c, 1)=K(c) .
$$

Then

$$
K(c)=\frac{1}{4[1+\delta]_{q}^{2}[2+\delta]_{q}}\left\{\left(\frac{[3]_{q}}{[4]_{q}[\delta+3]_{q}}-\frac{[2]_{q}^{2}}{[3]_{q}^{2}[\delta+2]_{q}}\right) c^{4}\right.
$$

$$
\begin{aligned}
& +\left(\frac{[3]_{q}}{[4]_{q}[\delta+3]_{q}}-\frac{[2]_{q}^{2}}{[3]_{q}^{2}[\delta+2]_{q}}\right) 2 c^{2}\left(4-c^{2}\right) \\
& \left.+\left(\frac{[3]_{q} c^{2}}{[4]_{q}[\delta+3]_{q}}+\frac{[2]_{q}^{2}\left(4-c^{2}\right)}{[3]_{q}^{2}[\delta+2]_{q}}\right)\left(4-c^{2}\right)\right\}
\end{aligned}
$$

Then

$$
K^{\prime}(c)=\frac{2}{[1+\delta]_{q}^{2}[2+\delta]_{q}}\left\{\frac{[3]_{q} c\left(3-c^{2}\right)}{[4]_{q}[\delta+3]_{q}}-\frac{[2]_{q}^{2} c\left(4-c^{2}\right)}{[3]_{q}^{2}[\delta+2]_{q}}\right\},
$$

by computing the above equation, the value of $K^{\prime}(c)<0$ is obtained when $0<c<2$ and $K(c)$ has real critical point at $c=0$. Also observe that $K(c)>K(2)$. Accordingly, $\max _{0 \leq c \leq 2} K(c)$ occurs at $c=0$. Then the upper bound of (13) corresponds to $v=1$ and $c=0$.

Hence,

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{4[2]_{q}^{2}}{[3]_{q}^{2}[\delta+1]_{q}^{2}[\delta+2]_{q}^{2}}
$$

Setting $\delta=0$ and $q \rightarrow 1^{-}$, we get the following result.

Corollary 3.1. (Janteng et al. 2006) If $f \in R_{q}(0)$, then

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{4}{9}
$$

Acknowledgement

Universiti Kebangsaan Malaysia supported the above work under grant: GUP-2019-032.

References

Abubaker A. \& Darus M. 2011. Hankel determinant for a class of analytic functions involving a generalized linear differential operator. International Journal of Pure and Applied Mathematics 69(4): 429-435.
Aldweby H. \& Darus M. 2014. Some subordination results on q-analogue of Ruscheweyh differential operator. Abstract and Applied Analysis 2014: 1-6.
Aldweby H. \& Darus M. 2013. A subclass of harmonic univalent functions associated with q-analogue of DziokSrivastava operator. ISRN Math. Anal. 2013: 1-6.
Aral A., Gupta V. \& Agarwal R.P. 2013. Applications of Q-Calculus in Operator Theory. New York: Springer.
Bansal D. 2013. Upper bound of second hankel determinant for a new class of analytic functions. Applied Mathematics Letters 26(1): 103-107.
Duren P.L. 1983. Univalent Functions. Grundlehren der Mathematishen Wissenschaften. New York: Springer.
Elhaddad S., Aldweby H. \& Darus M. 2018. Some properties on a class of harmonicunivalent functions defined by q-analogue of Ruscheweyh operator. Journal of Mathematical Analysis 9(2): 28-35.

Elhaddad S. \& Darus M. 2019. On meromorphic functions defined by a new operator containing the Mittag-Leffler function. Symmetry 11(2): 210.
Exton H. 1983. q-Hypergeometric Functions and Applications. Chichester: Ellis Horwood.
Jackson F.H. 1908. On q-functions and a certain difference operator. Transactions of the Royal Society of Edinburgh 46: 253-281.
Jackson F.H. 1910. On q-definite integrals. The Quarterly Journal of Pure and Applied Mathematics 41: 193-203.
Janteng A., Halim S.A. \& Darus M. 2006. Coefficient inequality for a function whose derivative has a positive real part. Journal of Inequalities in Pure and Applied Mathematics 7(2): 1-5.
Janteng A., Halim S.A. \& Darus M. 2007. Hankel determinant for starlike and convex functions. International Journal of Mathematical Analysis 1(13): 619-625.
Libera R.J. \& Zlotkiewicz E.J. 1982. Early coefficients of the inverse of a regular convex function. Proceedings of the American Mathematical Society $\mathbf{8 5}(2)$: 225-230.
Libera R.J. \& Zlotkiewicz E.J. 1983. Coefficient bounds for the inverse of a function with derivative in P. Proceedings of the American Mathematical Society 87(2): 251-257.
Macgregor T.H. 1962. Functions whose derivative has a positive real part. Transactions of the American Mathematical Society 104(3): 532-537.
Mahmood S., Srivastava H.M., Khan N., Ahmad Q.Z., Khan B. \& Ali I. 2019. Upper bound of the third Hankel determinant for a subclass of q-starlike functions. Symmetry 11(3): 347.
Mogra M.L. 1999. Applications of Ruscheweyh derivatives and Hadamard product to analytic functions. International Journal of Mathematics and Mathematical Sciences 22(4): 795-805.
Mohammed A. \& Darus M. 2012. Second Hankel determinant for a class of analytic functions defined by a linear operator. Tamkang Journal of Mathematics 43(3): 455-462.
Mohammed A. \& Darus M. 2013. A generalized operator involving the q-hypergeometric function. Mat. Vesnik 65: 454-465.
Noonan J. \& Thomas D. 1976. On the second Hankel determinant of areally mean p-valent functions. Transactions of the American Mathematical Society 223: 337-346.
Pommerenke C. 1966. On the coefficients and Hankel determinants of univalent functions. Journal of the London Mathematical Society 1(1): 111-122.
Pommerenke C. 1967. On the Hankel determinants of univalent functions. Mathematika 14(1): 108-112.
Purohit S.D. \& Raina R.K. 2011. Certain subclasses of analytic functions associated with fractional q-calculus operators. Mathematica Scandinavica 109: 55-70.
Purohit S.D. \& Raina R.K. 2013. Fractional q-calculus and certain subclass of univalent analytic functions. Mathematica (Cluj) 55(78): 62-74.
Raducanua D. \& Zaprawab P. 2017. Second Hankel determinant for close-to-convex functions. Comptes Rendus Mathematique 355(10): 1063-1071.
Ruscheweyh S. 1975. New criteria for univalent functions. Proceedings of the American Mathematical Society 49: 109-115.
Shukla S.L. \& Kumar V. 1983. Univalent functions defined by Ruscheweyh derivatives. International Journal of Mathematics and Mathematical Sciences 6(3): 483-486.
Srivastava H.M. 1989. Univalent functions, fractional calculus, and associated generalized hypergeometric functions, in Univalent Functions; Fractional Calculus; and Their Applications (H. M. Srivastava and S. Owa, Editors), Halsted Press (Ellis Horwood Limited, Chichester), pp. 329-354, John Wiley and Sons, New York, Chichester, Brisbane and Toronto.
Srivastava H.M., Altınkaya S. \& Yalcın S. 2018. Hankel determinant for a subclass of bi-univalent functions defined by using a symmetric q-derivative operator. Filomat 32(2): 503-516.

Department of Mathematical Sciences
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
43600 UKM Bangi
Selangor DE, MALAYSIA
E-mail: suhila.e@yahoo.com, maslina@ukm.edu.my*
Received: 9 March 2020
Accepted: 21 March 2020

[^0]
[^0]: *Corresponding author

