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ABSTRACT  

Let S  be the class of analytic functions which are univalent and normalised in the open unit 

disc  : 1 < .U z z   Second Hankel determinant of 
2

2 4 3
a a a  for a class of analytic 

functions  involving q-analoque of Ruscheweyh operator  is given. 
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ABSTRAK  

Andaikan S sebagai  kelas fungsi analisis yang univalen dan ternormal dalam cakera unit 

terbuka   : 1 <U z z  . Diberi penentu Hankel kedua 
2

2 4 3
a a a  untuk kelas fungsi 

analisis yang melibatkan analog-q bagi pengoperasi Ruscheweyh. 

Kata kunci: Pengoperasi Ruscheweyh analog-q;  fungsian Fekete-Szego;  penentu Hankel                     

1. Introduction  

The function class is denoted by  which represented by the following form: 

 

2

( ) , ( )k

k

k

f z z a z z U




                                                                                             (1) 

 

that are analytic in  : 1 <U z z    and satisfy the following  normalization conditions 

(0) 0f   and (0) 1.f    In addition, let S   be the class of functions  which are univalent 

in .U  

Geometric Function Theory includes the study of a numeral of subclasses within normalised 

analytic function, using varied approaches. Both q-calculus and fractional q-calculus are 

significant methods for examining a range of subclasses. Srivastava and Owa (1989) was 

the first to provide a clear basis for using q-calculus within Geometric Function Theory, and to 

apply the fundamental q-hypergeometric functions in this theory. Further, univalent function 

theory is possible to describe by applying q-calculus theory, and more recently the application 

of a fractional q-derivative operator and fractional q-integral operator has been seen in creating 

a number of analytic function subclasses (e.g. in Aldweby and Darus (2013; 2014); Elhaddad 

et al. (2018); Elhaddad and Darus (2019); Mahmood et al. (2019);  Purohit and Raina (2011; 

2013)). Purohit and Raina (2013), for example, examined the use of fractional q-calculus 

operators in defining a number of analytic function classes for U as an open unit disk. 

Meanwhile, Mohammed and Darus (2013) evaluated q-operator characteristics in terms of 

geometry and approximation with reference to particular analytic function subclasses within 
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compact disks. A more complete treatment of applied q-analysis within the theory of operators 

may be found in Aral et al. (2013) and Exton (1983). 

This work starts by defining key terms and detailed concepts within the q-calculus applied 

here. For the purposes of the report, the following assumption is made: 0 1q  . Firstly, 

fractional q-calculus operators for a function with complex values ( )f z are defined below: 

 

Definition 1.1. The q-number [ ]qk is defined by 

1
2 1

0

1
, ,

1
[ ]

1 ... .

k

q m
n m

n

q
k

q
k

q q q q k m






 



 
       



 

 

Definition 1.2. The q-factorial  [ ] !qk  is defined by 

1(1 )...(1 ... ), 1,2,...,
[ ] !

1, 0.
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                                                              (2) 

 

Definition 1.3. (Jackson 1908; 1910) The q-derivative operator 
qD of a function f is determined 

by 

( ) ( )
, 0

( 1)( )

( ). 0.

q

f qz f z
z

q zD f z

f z z
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                                                                                     (3) 

 
We note from Definition 1.3 that  
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From (1) and (3), we get 
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Aldweby and Darus (2014) defined the q-analogue of Ruscheweyh Operator q


 by 
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where 0   and [ ] !qk  is defined by (2). 

Also, as 1q  we have 
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where ( )f z
 is Ruscheweyh differential operator described by Ruscheweyh (1975) and 

studied by several authors, for example Mogra (1999), and Shukla and Kumar (1983). 

 

Noonan and Thomas (1976) examined the following 
thq Hankel determinant 
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in which 1r   and 1.q   This determinant has been the subject of study by a range of 

researchers. Specifically, a number of works provided sharp upper limits for 
2
(2)H (e.g. 

Abubaker and Darus (2011); Bansal (2013); Janteng et al. (2006; 2007); Mohammed and Darus 

(2012); Pommerenke (1966; 1967); Raducanu and Zaprawab (2017) and Srivastava et al. 

(2018)) in a range of normalised analytic function classes. Fekete-Szego functional is well-

established as 
2

3 2 2
(1)a a H  , which is generalisable to 

2

3 2
a a  to certain real and complex

 . Further, sharp estimation were provided by Fekete and Szego for 
2

3 2
a a  in real  as 

well as  f S , representing U 's normalised univalent function class. This effectively 

combines two coefficients describing area problems as Gronwall previously put forward in 

1914/15. Further, 
2

2 4 3
a a a as the functional has equivalence with

2
(2)H . For the current 

analysis, 
2
(2)H Hankel determinant upper bounds are determined for an analytic function 

subclass through the following: 

 

Definition 1.4.  Let f  . Then f is said to be within the class ( )qR  if it is satisfied the 

condition 

 

    0 .q qRe D f z z U                                                                                (5) 

 

Note that, when 0  and 1q   the class ( )qR   is reduced to the class  studied by 

MacGregor (1962) and Janteng et al. (2006). 

 

Following preliminary results are required to prove and validate the above results. 

2. Preliminaries   

Let be the family of all functions p analytic in U for which  ( ) 0Re p z   and 
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2

1 2( ) 1 .....p z c z c z    .                                                                                                     (6) 

 

Lemma 2.1. (Duren 1983) Let p within the class , then 2kc   for each k  . 

 

Lemma 2.2. (Libera & Zlotkiewicz 1982; 1983) Let p be given by (6). Then 

 
2 2

2 1 12 (4 )c c c x   ,                                                                                                               (7) 

 

for some , 1, <x x and 
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for some ,z 1 <z . 

 

3. Main results  

Theorem 3.1.  Let ( )qf R  . Then 
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Proof.  Since ( )qf R  , then from (5) we have  

 

( ( )) ( ).q qD f z p z                                                                                                                       (9) 

 

By replacing ( )q f z
 and ( )p z  with their series in (9), we get 
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Equating the coefficients on both side of (10) yields 
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From (11), we observe the following 
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Since ( )p z is within  concurrently, we suppose that   
1c  is greater than zero without the loss 

of generality. For accessibility of notation, take 
1 ( [0,2]).c c c   By means of substituting 

the values of  
1c and 2c respectively, from (7) and (8), we have 
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By using triangle inequality, | | 1z  and replacement of | |x  by v , we get 
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                                         ( , ),H c v                       (13)                                                                        

  

where | | 1v x  and 0 2c  . 

 

We next maximize the function ( , )H c v on  [0,2] [0,1]. Differentiating ( , )H c v in (13) 

partially with respect to ,v yields 
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This means that H is an increasing function of .v  Then ( , )H c v

can not have a maximum in the interior of  [0,2] [0,1]. Furthermore, for fixed [0,2]c . 
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by computing the above equation, the value of  ( )K c <0  is obtained when 0 < 2 <c and 

( )K c  has real critical point at 0.c   Also observe that .>) 2 ( ( )K c K  Accordingly, 

0 2max ( )c K c 
occurs at 0.c   Then the upper bound of (13) corresponds to 1v  and 

0.c   

 

Hence, 
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Setting 0  and 1q  , we get the following result. 

 

Corollary 3.1. (Janteng et al. 2006) If (0),qf R then 
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