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ABSTRACT

In this paper, our objective is to test the statistical hypothesis
Hyt F()=F (x) forallxagainst Hy: F(x)=F,(x) for some x, where Fqo(x) is a known
distribution function. In this study, a goodness of fit test statistic for testing the logistic distribution
based on Kullback-Leibler information as proposed by Song (2002) is studied. The logistic parameters

are estimated by using several methods of estimation such as maximum likelihood, order statistics,
moments, L-moments and LQ-moments. The critical value based on the statistics which involves the

Kullback-Leibler information under the assumption that Hy is true is computed using Monte Carlo

simulations. The performance of the test under simple random sampling is investigated. Ten different
distributions are considered under the alternative hypothesis. Based on Monte Carlo simulations, for all
the distributions considered, it is found that the test statistics based on estimators found by moment and
LQ-moment methods have the highest power, except for Weibull (2, .5) and Gamma distributions.
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ABSTRAK
Objektif di dalam makalah ini ialah menguji hipotesis Hy iF(X) =F (x) untuk semua x melawan

HytF(x)# Ry (x) untuk sesetengah x, yang Fo(x) suatu fungsi taburan yang diketahui. Dalam

kajian ini statistik ujian kebagusan penyuaian untuk taburan logistik berdasarkan maklumat Kullback-
Leibler yang dicadangkan oleh Song (2002) dikaji. Parameter-parameter logistik dianggarkan dengan
menggunakan berbagai-bagai kaedah penganggaran seperti kaedah kebolehjadian maksimum, statistik
tertib, kaedah momen, momen-L dan momen-LQ. Nilai genting didasarkan statistik yang melibatkan
maklumat Kullback-Leibler di bawah anggapan yang Hq benar dan dihitung menerusi simulasi Monte

Carlo. Prestasi ujian ini di bawah pensampelan rawak mudah dikaji. Sepuluh taburan yang berbeza
dipertimbangkan sebagai hipotesis alternatif. Berdasarkan simulasi Monte Carlo telah didapati bahawa
ujian statistik berdasarkan penganggar momen dan momen-LQ mempunyai kuasa yang terbesar kecuali
bagi Weibull (2, .5) dan taburan-taburan Gama.

Kata kunci: Ujian kebagusan penyuaian; maklumat Kullback-Leibler; taburan logistik

1. Introduction

The logistic distribution has interesting application in many different fields, such as public
health, graduation of mortality statistics, survival data, income distributions, human
population and biology (Balakrishnan 1992).

Arizono and Ohta (1989) proposed a test of normality based on an estimate of the
Kullback-Leibler information (KLI). Song (2002) presents a general methodology for
developing asymptotically distribution-free goodness of fit tests based on the Kullback-
Leibler information. Also, he shows that the tests to be omnibus within an extremely large
class of nonparametric global alternatives and to have good local power. Ibrahim et al.
(2009), however, study the power of chi-square test for goodness of fit using Kullback-
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Leibler information under RSS and SRS. They found that the chi-square test is more powerful
under ranked set sampling (RSS) as compared to simple random sampling (SRS).

In this paper, we introduce a test statistic for goodness of fit test for logistic distribution
which is based on the Kullback-Leibler information statistic. We estimate the logistic
parameters by using several methods of estimation such as maximum likelihood, order
statistics, moments, L-moments and LQ-moments. We compute the critical values and the
power based on the statistics which involves the Kullback-Leibler information using Monte
Carlo simulations.

L-moments have the theoretical advantages over the conventional moments since it is able
to characterise a wider range of distributions and, when estimated from a sample it is found to
be more robust to the presence of outliers in the data. Also, the parameter estimates obtained
from L-moments are sometimes more accurate in small samples than even the maximum
likelihood estimates.

This paper is organised as follows. In Section 2, we define the test statistic. We define the
estimators of logistic distribution in Section 3. In Section 4, we define two algorithms to
calculate the percentage points and the power function of the test statistic at an alternative
distribution. In Section 5, a simulation study is conducted to study the power of the test
statistic and we state our conclusions in Section 6.

2. Hypothesis Testing Involving KLI
Let X, X,,...,X

cumulative distribution function F(x ), with a finite mean x and variance . Let

be a random sample with probability density function f (x) and

n

X < X, <..2X,,, denote the corresponding order statistics.

We are interested in testing the hypothesis
H,:F(x)=F(x) vx vs. H,:F(x)=F,(x) forsome x,
where F (X)) is a logistic distribution function given in the form

Fo(x;a,ﬁ):expE—X%j£l+exp(_X;aD | (1)
and its density function is given as
fo(x;a,ﬁ):%expE—%)£1+exp£—x;aD , )

where « is a location parameter, [ is a scale parameter, X ,a € (—o0,) and S > 0.

To discriminate between null and alternative hypotheses, H, and H,, the KLI is
employed, and can be given by

1(f, )= T f(x)log%dx. (3)

From equation (3) and using logarithms, the KL1 is given as
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I(f, f,)= T f(x)log f(x)dx— T f (x)log f,(x;a, B)dx

:—H(f)—T f (x)log f,(x;cx, B)dX, (4)

where H (f ) is the entropy of a distribution f (x), i.e. population entropy, with a density

function f (x) and H (f ) is known as Shannon’s entropy. According to Vasicek (1976),
the estimator of

H(f)==[" f(x)log f (x)dx = _flog( pF (p)jdp,
where p=F(x), is given by
13 n
— > log| — (X i.n =X n ) b 5
n ; g(ZN ( i+m:n i—-m:n )) ( )
where W, called window size, is a positive integer (w<n/2), X, =X, fori<land

X.,=X,, fori>n. According to Song (2002), the estimator of ro f(x)log f,(x;a, p)dx
is given by

1 N A
Hzlog fo(X;Qsrs + Bsrs ) (6)
=

where Qg and [}SRS are the estimators of « and § under SRS respectively. By
substituting the pdf of logistic (2) in the equation (6), the result is given by

13 -~ 3
FZIogfo(X i+ Osps + P )
i1

13 ~ [ X —ag X —a
==Y —log f—| =—=—3R |- 2]og| 1+exp| ———=—3RS.
n ;( gﬂ [ ﬂSRS J g[ ’ p( ﬂSRS JJJ

= —10g Bane —%i[%} ZIog [1+ exp( XAB 7)

i=1 ﬂSRS i=1 RS

Using equations (5), (6) and (7), the estimator of | (f ,f,), denotedas I, is given by

mn?

I :—H(f)—T f (x)log f,(X;, B) dx,

10 n 18 R ~
Z—;ZMQKE(XHM - Xi_m:n)j—;zmg fo (X3 tsas s Bims)
i=1 i=
18 n 2
= _Hzllog(ﬂ(x i+m:n -X i-mn )j+ Iog ﬂSRS

- aSRSJ | [1 ( | — Olops JJ 8
;[ ﬂSRS ;09 e ﬁSRS ©
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From equation (8), it is clear that the test statistic | is a function of

mn
(X = Ggps )/ Beps» 1 =L, So, the statistics (X ; —dgns )/ Begs are location and scale

invariant under the null hypothesis. Therefore, the test statistic |, is location and scale

n
invariant. Hence, a Monte Carlo simulation is used to obtain the critical and power values for
any given values of the parameters.

3. Estimators of «,

We will introduce four different types of estimators for o and 8, which are maximum

likelihood estimator (mle), moment estimator (moe), order statistic estimator (ose),
L-moment estimator (Im) and LQ-moment estimator (Ige). The mles are determined by
taking the partial derivatives with respect to « and 8, and equating the resulting quantities to
zero and with some algebraic manipulation, we obtain the following equations:

ol 2 i1[ [ X-—QJJ ,
1+exp| —
B

[Xi—ajexp[_xi—aj
@B n 1&(X —a), < B B_)_
op 2 22”[ j+z - > ©)

X, —a
A@p)_n_s o) L

and

No closed form can be found for the maximum likelihood estimators. The moment estimators
for logistic distribution are given by

A a : 3

Crgesrs =X srs ANA Broe sps :78 , (10)
where X and S are the mean and standard deviation for the sample of size n
respectively. The pth quantile for the logistic distribution is given by

Q(p;a,ﬁ)zF‘l(p)=a+ﬁlog[%j- (11)
It is known that the lower, median, upper quartiles, denoted as F *(.25), F *(.5), F *(.25)
respectively and distributional limits, F(0), F *(1), gave a feel for the spread of the
distribution over the axis. Since the interquartile range (IQR) which is given by

IQR =F *(0.75) - F (0.25), (12)
is independent of the location parameter, the scale parameter can be estimated using IQR.
Based on (11), if we substitute p =0.25 and p =0.75, corresponding to the first and third
quartiles, namely lower and upper quartile, we will have
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F(0.25)=a+p '09(1?6225j =a—plog(3),

and

F(0.75)=a+p logﬂlf)gisj =a+plog(3),

respectively. The two parameters « and S are defined as

1 -1 -1
o= E(F (0.75)+ F (0.25)), (13)
and
j— (F(0.75)-F (0.25)) (14)
2 log3 ' B

respectively. Accordingly, the two estimators of & and 3, denoted as @, s and ﬁose_SRs,

are
- 1

Qocps = E(F“ 1(0.75)+F -1(0.25)), (15)
and
Brn-srs = e (F(0.75) - F(0.25)) (16)
0se—SRS 2 | 09(3) . . .

The mth L-moment estimator, denoted asA_,of a probability distribution as explained in
Hosking (1990), is given by

A :%f(—l)j[mj_ljum_j:m, m=12,.. (17)

where ., is defined as

:ui:n:E(Xi:n):J‘Xfi:n(X)’ (18)

where
1

“Bamay T o) @R ) )

fi:n(X)

Using (17), the first and second L-moments, respectively, are given by

1
A=a=w, and 4, :E(ﬂzz_ﬂrz):ﬁ:

where

B froa Y Ny -
,uz:z—a+B(2,1)E[log(1 judU—a+[3,

and

L, =a+ P jlog(lguj(l-u)du:a—ﬁ.
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Hence, u,,— ., =283 impliesthat g == (,u22 My )=y

Now we calculate the estimated value of 1., and z,., by using

s+n—d

2

a (s,d,n)X

il e

X 44, drawn without replacement from X, ,...,

M

1<s<d <n,

(20)

sd;n

where a, :[ j Here, a, is the probability that in a subsample

X

Nagaraja (2003). For d = 2 and from (20), the estimated value of ., and ., respectively,
are given by

L e X .., as given in David and

R 1 n-10) — n—i 2 n-1
:ul:ZZTI1[ j[z 1jxi:n:n(n_1);(n_l)x|n’
!
and
1 @(i-1)(n-i 2
IUZ:ZZTI1[ j[z ZJXi:n:n(n—l);I X|+J_n
2
Thus,
o iy = S ()X g~ S (11X,
2:2 12 n(n_l)F1 i+Ln n(n—l)i:1 in

=

D0 X =2 (n=i)X

n-1

)

i=1

The L-moment estimators, denoted as ¢, sz and ﬁ,me_SRs , respectively, are given by

Qime-srs = X sps s

and
A 1.. L= .
Bie —srs :E(ﬂzz /112 [ZI Xi 1 _z —1 )X in j (21)
n -1 oy
Analogous to L-moments, the mth LQ-moments, denoted as 77, is given by
1% i(m-=1) _
nm:—Z(—l)’[ _ Jum_j:m, m=12,.. (22)
m = J
where [ is defined by
i, =F7"! (qbeta(O.SO;i N —i +1)). (23)
Using (22), the first and second LQ-moments, respectively, are given by
1, = fiy, = median,
and (24)

1, . -
n, = E(ﬂz:z — fy,).
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Using (23), i, and fi,.,, respectively, are given by
f,, = F " (gbeta(0.50;2,1))

—a+ Blog gbeta(0.50;2,1) 010881,
1—qgbeta(0.50;2,1)
and
fiy, = F 7 (qbeta(0.50;1,2) )
—a+Blog gbeta(0.50;1,2) 008815,
1—qbeta(0.50;1, 2)
Hence, i, — fi,, =1.762f3 implies that 3 :—”21:2.7‘6/2‘1:2 _

The LQ-moments can be estimated in a straightforward manner by estimating the quantiles of
order statistics. The estimator of the parameters based on LQ-moments, denoted as

Chgesrs AN By, _sps » Tespectively, are given by

&IqE_SRS = median, (25)
and
" 1/2 2 124 . =-1 ;
Bie-srs = E(/”z:z - /”rz) - E(F (qbeta(O.SO, 2’1))_ F (qbeta(O.SO,l, 2)))
:%(F“ 1(0.7071) - F (0.2929)), (26)

where F %(0.7071) and F ~(0.2929) are the empirical estimates from data.

4. Algorithm for Power Comparison

Under SRS, to compare the power of |__ when different estimators are considered, the
following algorithm is designed to calculate the critical values via Monte Carlo simulation:
a) Let X,,..,X, be a random sample from logistic distribution with & =0, f =1,
and F,(x;0,1).
b) Given significance level o =0.05, random sample of sizes n =12, 18, 24, 36,
and window sizes w =1,2, 3, 4.
c) Estimate the parameters « and S from the sample by maximum likelihood

estimators in equation (9), method of moment estimators in equation (10), order
statistic estimators in equations (15) and (16), L-moment estimators in equation (21)
and LQ-moment estimators in equations (25) and (26).

d) Calculate the test statistic T =1, using equation (8).

e) Repeat the steps (1)-(4) 20, 000 times to get T, ,..., T g0-

f) Determine the critical value d . of T which is given by the (1-a")100" quantile
of the distribution of T, ,..., T gg0-
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Next, to calculate the power of T at H, the alternative distribution H,, the simulation
is needed. So, the following algorithm is designed:
a) Let X,,...,X , bearandom sample from H.

b) Given significance level o =0.05, random samples of size n =12, 18, 24, 36,
and window sizes w =1,2, 3, 4.
c) Estimate the parameters « and S from the sample by maximum likelihood

estimators in equation (9), method of moment estimators in equation (10), order
statistic estimators in equations (15) and (16), L-moment estimators in equation (21)
and LQ-moment estimators in equations (25) and (26).

d) Calculate the test statistic T =1 __ using equation (8).
e) Repeat the steps (1)-(4) 20, 000 times to get T, ,..., T gg0-

20,000
f) To calculate the power, determine 7z (T )~ L Z I (T, >d .), where I()
20,000 = “

stands for indicator function.

5. Simulation Results

In order to assess the performance of the tests statistics under simple random sampling, many
alternative distributions are studied. The distributions selected are five symmetric
distributions, namely, normal, Laplace, Cauchy, Student t and logistic, and also three
asymmetric distributions, namely, lognormal, exponential and Weibull.

In this section, to calculate the critical points and power of the test statistics, a Monte Carlo
simulation of 20,000 iterations according to the algorithms of Section 4 is conducted. The
powers of the tests are computed and compared for different sample sizes, i.e.
n=12, 18, 24,36, and different alternative distributions, i.e. Normal (0, 1),

Logistic(0, .7), Laplace(0, 1), StudentT (12), StudentT (4), Cauchy (0, 1),
Exponential (1), Weibull (T(L.5), 2), Weibull (2, .5) and Lognormal (=0.2, +/.4). The
comparisons are made for the cases when the data are quantified via SRS and RSS.

Based on the simulation, critical values for the level of significance o =0.05 are
determined and given in Table 7.6. Also, the power and the efficiency of the test given that

a” =0.05 when different distributions are considered under H, are reported in Tables 1- 10
and Tables 11 — 21 respectively.
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Table 1: Critical values for the test statistics | nn for different sample sizes n =12, 18, 24, 36,
window sizes W=1,2,3,4 and «  =0.05

SRS
n w  mle moe ose Ime lge
12 1 582 .604 501 .679 .868
2 .601 .588 712 .692 .852
3 .567 574 .685 .667 .814
4 582 593 701 .691 .846
18 1 .627 .637 .691 .669 .893
2 .456 459 .534 498 751
3 415 432 .502 .456 725
4 432 443 .503 A74 17
24 1 553 .561 .606 .582 .835
2 .382 .382 442 403 .695
3 .339 .353 408 .365 .643
4 340 .343 402 .364 .653
36 1 482 488 516 491 .569
2 .303 .315 .348 .327 405
3 .268 .270 .305 279 .366
4 257 .258 .288 .267 .346

Table 2: Power estimates of the | mn test statistic under SRS for Normal and Logistic alternative distributions

with different sample sizes N =12, 18, 24, 36, window sizes W=1,2,3,4 and " =0.05

Normal(0, 1) Logistic(0, .7)
n w  mle moe ose Ime lge mle moe ose Ime lge
12 1 .050 .051 .045 .050 .038 .049 .048 .050 .048 .044
2 .054 .060 .044 .051 .033 .051 .047 .047 .050 .049
3  .061 .060 .050 .051 .033 .051 .049 .050 .049 .044
4 071 .057 .048 .051 .032 .051 .048 .065 .049 .047
18 1 .052 .052 .050 .052 .030 .048 .050 .052 .046 .045
2 .052 .060 .048 .057 .031 .051 .050 .046 .047 .049
3 .075 .068 .051 .060 .031 .046 .047 .049 .048 .051
4 .068 072 .058 .068 .031 .052 .051 .068 .047 .048
24 1 .060 .060 .052 .058 .031 .050 .044 .051 .044 .048
2 .050 .062 .058 .058 .030 .050 .045 .048 .043 .049
3 .079 .065 .062 .067 .028 .051 .045 .044 .046 .049
4 084 .080 .066 .067 .025 .047 .045 .082 .044 .044
36 1 .060 .061 .063 .056 .038 .045 .050 .049 .046 .048
2 .055 071 .062 .068 .032 .048 047 .050 .043 .048
3 .076 .082 .070 .076 .033 .048 .048 .046 .048 .044
4 085 .092 .080 .085 .037 .044 .058 117 .047 .046
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Table 3: Power estimates of the | mn Statistics under SRS for Laplace and Student t alternative distributions with

n

different sample sizes N =12, 18, 24, 36, windowsizesWw =1,2,3,4 and " =0.05

Laplace(0, 1) StudentT (12)
n w  mle moe ose Ime Ige mle moe ose Ime lge
12 1 051 .051 .065 .047 101 .050 .046 .050 .044 .032
2 .051 .043 .076 .051 102 .051 .047 .042 .043 .036
3 .051 .048 .076 .050 101 .052 .049 .044 .038 .033
4 .049 .046 .074 .041 109 .057 .048 .044 .052 .038
18 1 .048 .056 .088 .051 137 .048 .046 .047 .041 .037
2 .045 .051 .099 .051 .136 .051 .049 .047 .049 .034
3 .041 .046 .084 .048 .138 .048 .050 .048 .051 .033
4 031 .038 .076 .038 130 .056 .053 .049 .058 .038
24 1 .056 .061 101 .050 161 .048 .046 .046 .047 .031
2 .052 .057 .105 .050 .162 .051 .052 .047 .049 .030
3 .051 .052 102 .046 170 .050 .049 .047 .052 .032
4 .032 .040 .085 .040 .162 .057 .052 .050 .051 .032
36 1 .074 .075 123 .046 199 .051 .050 .047 .051 .033
2 .075 .085 141 .052 .210 .055 .050 .048 .049 .033
3 .066 .080 148 .046 211 .051 .053 .046 .052 .032
4 .052 .062 .128 .046 .206 .065 .054 .052 .060 .030

Table 4: Power estimates of the | mn Statistics under SRS for Student t and Cauchy alternative distributions with

n

different sample sizes N =12, 18, 24, 36, windowsizesW =1,2,3,4 and " =0.05

StudentT (4) Cauchy(0, 1)
n w  mle moe ose Ime Ige mle moe ose Ime Ige
12 1 .052 .058 .061 .053 .067 .612 401 470 310 510
2 .059 .052 .068 .055 .075 .326 402 490 .330 523
3 .058 .060 .068 .054 .072 .309 .362 491 .325 537
4 056 .054 .062 .054 .074 270 312 480 321 523
18 1 .050 .063 .070 .055 .081 .612 .562 .645 460 672
2 .057 .061 .076 .061 .082 .305 .582 .663 470 .681
3 .056 .061 .071 .060 .083 471 .530 .658 462 .682
4 046 .053 .062 .055 .081 .381 .465 .621 448 .685
24 1 .058 .068 .070 .052 .084 .608 .685 743 .630 778
2 .060 .070 .078 .056 .088 .630 .704 172 .650 .785
3 .056 .067 .076 .055 .090 .632 .688 753 .645 776
4 051 .054 .063 .048 .091 534 .632 730 .602 74
36 1 .062 .072 .076 .072 101 .790 .835 .870 .820 .886
2 .063 .081 .083 .073 .108 .623 .855 .890 .840 .894
3 .063 .076 .082 .075 A11 .822 .845 .893 .842 .893
4 051 .061 .071 .060 .095 .785 .824 .872 .827 .885
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n

statistics under SRS for Gamma and Weibull alternative distributions with

different sample sizes N =12, 18, 24, 36, windowsizesw =1,2,3,4 and o =0.05

Exponential (1)

Weibull(T(L.5), 2)

n w  mle moe ose Ime lge mle moe ose Ime Ige
12 1 .313 .326 272 372 .169 .460 441 .361 511 272
2 .420 413 301 .390 192 522 .552 421 .524 272
3 .301 439 319 420 .182 .540 575 427 .552 .283
4 492 476 322 453 .183 581 .598 425 .580 281
18 1 518 518 418 .555 227 .648 725 575 .680 .355
2 .652 713 .565 .649 314 .829 .831 723 T74 426
3 .766 701 .550 .675 237 811 .813 704 .801 402
4 710 719 576 711 271 .812 .821 719 .813 .393
24 1 654 .669 .590 .691 .301 792 .806 .738 782 487
2 .781 .802 .701 .740 .285 .882 .881 .819 .852 AT72
3 .831 .841 .765 .790 311 .903 .902 .851 .903 490
4 862 .861 782 .863 314 917 .926 .872 .923 532
36 1 .836 .855 .802 .821 711 916 918 .893 .891 .889
2 .903 .905 .877 .872 792 .935 .935 .928 .922 .893
3  .928 .926 916 922 .830 .939 .938 .935 .937 .909
4 911 961 .923 .949 .864 .958 .952 951 .957 .924

Table 6: Power estimates of the | m

n

statistics under SRS for Weibull and Lognormal alternative distributions

with different sample sizes N =12, 18, 24, 36, windowsizesw =1,2,3,4 and o =0.05

Weibull(2, .5) Lognormal (0.2, /.4)
n w  mle moe ose Ime lge mle moe ose Ime lge
12 1 .19 .059 .058 .058 .050 173 .183 154 .220 119
2 273 .076 .066 .065 .041 310 .236 .183 244 115
3 .318 .099 .063 .074 .043 327 .256 201 .253 .126
4 410 .096 .060 .086 .041 .329 .293 .207 .285 123
18 1 .220 .092 .081 11 .040 .284 275 .202 .292 147
2 .377 112 .086 115 .041 291 372 .262 311 .138
3 .378 119 101 115 .037 426 .405 .301 386 123
4 .380 125 .102 122 .035 423 432 .292 413 137
24 1 251 .102 .093 .155 .032 .330 371 .333 402 152
2 .393 135 .105 175 .035 501 515 .382 521 152
3 .429 144 .109 181 .034 .584 572 432 .551 .155
4 474 .193 126 .186 .033 .582 597 444 .601 A71
36 1 .327 139 122 .240 .058 481 .504 414 573 .362
2 461 .199 .168 .240 .073 .665 717 .609 .670 .565
3 .589 241 .195 .263 .084 746 T72 .642 751 513
4 610 .280 .225 .287 .087 726 .755 .641 .736 478
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From the above tables, we make the following remarks:

a) The percentage points for the test decrease as the sample size n increases.
b) The power increases as the sample size n increases.
C) The power increases as the window size m increases.

d) In the case of moment estimator, the test has the highest power for Normal, Logistic,
Student T (12), and Exponential distributions.

e) In the case of L-Moment estimator, the test has the highest power for
Weibull (T'(1.5), 2) and lognormal distributions.

f) Inthe case of Maximum Likelihood estimator, the test has the highest power for
Weibull (2, .5) distribution.

g) When the estimators are compared, the test considered has the lowest power for
Weibull (2, .5), and highest power for Cauchy.

6. Conclusion

An accurate estimation of parameters of the logistic distribution in statistical analysis is
importance. In this paper, we have introduced a test statistic of goodness of fit for logistic
distribution based on Kullback-Leibler information measure. We considered ten different
distributions under the alternative hypothesis. It is found that the test statistics based on
estimators found by moment and order statistic methods have the highest power, except for
Weibull and Lognormal distributions. In the case of Cauchy, the test is found to have the
highest power for all estimators but the test has the lowest power for Weibull(2, .5). The

theory developed could be extended easily to other distributions. Also, we can apply the test
statistics considered under RSS, extreme RSS and median RSS.
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