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ABSTRACT  

In this paper, our objective is to test the statistical hypothesis 
: ( ) ( )     for all  against   : ( ) ( )1H F x F x x H F x F xo o o    for some ,x  where ( )F xo   is a known 

distribution function. In this study, a goodness of fit test statistic for testing the logistic distribution 
based on Kullback-Leibler information as proposed by Song (2002) is studied. The logistic parameters 
are estimated by using several methods of estimation such as maximum likelihood, order statistics, 
moments, L-moments and LQ-moments.  The critical value based on the statistics which involves the 
Kullback-Leibler information under the assumption that Ho  is true is computed using Monte Carlo 
simulations. The performance of the test under simple random sampling is investigated. Ten different 
distributions are considered under the alternative hypothesis. Based on Monte Carlo simulations, for all 
the distributions considered, it is found that the test statistics based on estimators found by moment and 
LQ-moment methods have the highest power, except for (2, .5)Weibull  and Gamma distributions. 
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ABSTRAK  

Objektif di dalam makalah  ini  ialah menguji hipotesis : ( ) ( )     untuk semua melawanH F x F x xo o  

 : ( ) ( )1H F x F xo  untuk sesetengah x, yang ( )F xo   suatu fungsi taburan yang diketahui. Dalam 

kajian  ini statistik ujian kebagusan penyuaian untuk taburan logistik berdasarkan maklumat Kullback-
Leibler yang dicadangkan oleh Song (2002) dikaji. Parameter-parameter  logistik dianggarkan dengan 
menggunakan berbagai-bagai kaedah penganggaran seperti kaedah kebolehjadian maksimum, statistik 
tertib, kaedah momen, momen-L dan momen-LQ. Nilai genting didasarkan statistik yang melibatkan 
maklumat Kullback-Leibler di bawah anggapan yang Ho benar dan dihitung menerusi simulasi Monte 
Carlo. Prestasi ujian ini di bawah pensampelan rawak mudah dikaji. Sepuluh taburan yang berbeza 
dipertimbangkan sebagai hipotesis alternatif. Berdasarkan simulasi Monte Carlo telah didapati bahawa 
ujian statistik berdasarkan penganggar momen dan momen-LQ mempunyai kuasa yang terbesar kecuali 
bagi (2, .5)Weibull dan taburan-taburan Gama. 

Kata kunci: Ujian kebagusan penyuaian; maklumat Kullback-Leibler; taburan logistik                   

1. Introduction 
The logistic distribution has interesting application in many different fields, such as public 
health, graduation of mortality statistics, survival data, income distributions, human 
population and biology (Balakrishnan 1992).            
     Arizono and Ohta (1989) proposed a test of normality based on an estimate of the 
Kullback-Leibler information (KLI). Song (2002) presents a general methodology for 
developing asymptotically distribution-free goodness of fit tests based on the Kullback-
Leibler information. Also, he shows that the tests to be omnibus within an extremely large 
class of nonparametric global alternatives and to have good local power. Ibrahim et al. 
(2009), however, study the power of chi-square test for goodness of fit using Kullback-
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Leibler information under RSS and SRS. They found that the chi-square test is more powerful 
under ranked set sampling (RSS) as compared to simple random sampling (SRS).  
     In this paper, we introduce a test statistic for goodness of fit test for logistic distribution 
which is based on the Kullback-Leibler information statistic. We estimate the logistic 
parameters by using several methods of estimation such as maximum likelihood, order 
statistics, moments, L-moments and LQ-moments.  We compute the critical values and the 
power based on the statistics which involves the Kullback-Leibler information using Monte 
Carlo simulations. 
     L-moments have the theoretical advantages over the conventional moments since it is able 
to characterise a wider range of distributions and, when estimated from a sample it is found to 
be more robust to the presence of outliers in the data. Also, the parameter estimates obtained 
from L-moments are sometimes more accurate in small samples than even the maximum 
likelihood estimates. 
     This paper is organised as follows. In Section 2, we define the test statistic. We define the 
estimators of logistic distribution in Section 3. In Section 4, we define two algorithms to 
calculate the percentage points and the power function of the test statistic at an alternative 
distribution.  In Section 5, a simulation study is conducted to study the power of the test 
statistic and we state our conclusions in Section 6.  

2. Hypothesis Testing Involving KLI 

Let 1 2,  ,..., nX X X   be a random sample with probability density function ( )f x  and 

cumulative distribution function ( ),F x  with a finite mean   and variance 2.  Let 

1: 2: : ...n n n nX X X    denote the corresponding order statistics.  
 
We are interested in testing the hypothesis 

1: ( ) ( )    vs.    : ( ) ( )o o oH F x F x x H F x F x     for some ,x  
where ( )oF x  is a logistic distribution function  given in the form 
 

1

( ; , ) exp 1 exp ,o
x xF x   
 


     

       
    

                                        (1) 

and its density function is given as 
2

1( ; , ) exp 1 exp ,o
x xf x   

  


     

       
    

                                    (2) 

where   is a location parameter,   is a scale parameter, , ( , ) and 0.x        
 

     To discriminate between null and alternative hypotheses, 0 1 and ,H H  the KLI is 
employed, and can be given by 

0
0

( )( , ) ( )log .
( ; , )
f xI f f f x dx

f x  





                                                                (3) 

From equation (3) and using logarithms, the KLI is given as 
 



 
Goodness of fit test for logistic distribution involving Kullback-Leibler information  

 
  

111 

0 0( , ) ( )log ( ) ( )log ( ; , )I f f f x f x dx f x f x dx 
 

 

                                    

      0( ) ( )log ( ; , ) ,H f f x f x dx 




                                           (4) 

where ( )H f  is the entropy of a distribution ( )f x , i.e. population entropy, with a density 
function ( )f x  and ( )H f  is known as Shannon’s entropy. According to Vasicek (1976), 
the estimator of  

  
1 1

0

d( ) ( )log ( ) log ( ) ,
dp

H f f x f x dx F p dp
 



 
    

 
    

where  ( ),p F x  is given by  

 : :
1

1 log ,
2

n

i m n i m n
i

n X X
n w  



  
 

                                   (5) 

where ,w called window size, is a positive integer  : 1:( / 2),  X  for 1 andi n nw n X i    

: : X  for .i n n nX i n   According to Song (2002), the estimator of  0( )log ( ; , )f x f x dx 


  
is given by  

0
1

1 ˆˆlog ( ; , ),
n

i SRS SRS
i

f X
n

 

                                                                         (6) 

where ˆˆ  and SRS SRS   are the estimators of  and    under SRS respectively. By 
substituting the pdf of logistic (2) in the equation (6), the result is given by   

0
1

1

1 ˆˆlog ( ; , )

ˆ ˆ1 ˆ log 2log 1 expˆ ˆ

n

i SRS SRS
i

n
SRS SRS

i SRS SRS

f X
n

X X
n

 

 


 





      
                    




 

   
1 1

ˆ ˆ1 2ˆlog log 1 exp .ˆ ˆ
n n

SRS SRS
SRS

i iSRS SRS

X X
n n

 


  

     
                 

              (7) 

Using equations (5), (6) and (7), the estimator of 0( , ),I f f  denoted as  ,mnI  is given by 

 

0

: : 0
1 1

( ) ( )log ( ; , ) ,

1 1 ˆˆ     log log ( ; , )
2

mn

n n

i m n i m n i SRS SRS
i i

I H f f x f x dx

n X X f X
n w n

 

 





 
 

  

     
 



 
                                                                     

        : :
1

1 ˆlog log
2

n

i m n i m n SRS
i

n X X
n w

 


     
 

       

          
1 1

ˆ ˆ1 2+ log 1 exp .ˆ ˆ
n n

i SRS i SRS

i iSRS SRS

X X
n n

 
  

     
              

                        (8) 
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From equation (8), it is clear that the test statistic mnI  is a function of 

  ˆˆ / ,  1,..., .i SRS SRSX i n    So, the statistics   ˆˆ /i SRS SRSX    are location and scale 

invariant under the null hypothesis. Therefore, the test statistic mnI  is location and scale 
invariant. Hence, a Monte Carlo simulation is used to obtain the critical and power values for 
any given values of the parameters. 

3. Estimators of ,     

We will introduce four different types of estimators for  and ,   which are maximum 
likelihood estimator (mle), moment estimator (moe), order statistic estimator (ose),  
L-moment estimator (lm) and LQ-moment estimator (lqe). The mles are determined by 
taking the partial derivatives with respect to  and ,   and equating the resulting quantities to 
zero and with some algebraic manipulation, we obtain the following equations: 

1

exp
( , ) 0,

2
1 exp

i
n

i i

X
L n

X


 

 




 
     

      
  

                                                  

  
and 

1 1

exp
( , ) 1 0.

2 2
1 exp

i i
n n

i

i i i

X X
XL n

X

 
  

  


 

    
                    

  

                (9)   

No closed form can be found for the maximum likelihood estimators. The moment estimators 
for logistic distribution are given by 

3ˆˆ    and   ,moe SRS SRS moe SRSX S 
                                                         (10) 

where    and  X S  are the mean and standard deviation for the sample of size n  
respectively. The thp  quantile for the logistic distribution is given by 

1( ; , ) ( ) log .
1

pQ p F p
p

     
     

                                                     (11) 

It is known that the lower, median, upper quartiles, denoted as 1 1 1(.25),  (.5),  (.25)F F F    
respectively and distributional limits, 1 1(0),  (1),F F   gave a feel for the spread of the 
distribution over the axis. Since the interquartile range (IQR) which is given by 

1 1(0.75) (0.25),IQR F F                                                    (12) 
is independent of the location parameter, the scale parameter can be estimated using IQR. 
Based on (11), if we substitute 0.25 and 0.75,p p   corresponding to the first and third 
quartiles, namely lower and upper quartile, we will have 
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 1 0.25(0.25) log log 3 ,
1 0.25

F           
 

and 

 1 0.75(0.75) log log 3 ,
1 0.75

F           
 

respectively. The two parameters  and    are defined as  

 1 11 (0.75) (0.25) ,
2

F F                                                                         (13) 

and 

 1 11 (0.75) (0.25) ,
2 log3

F F                                                                (14) 

respectively. Accordingly, the two estimators of  and ,   denoted as ˆˆ  and ,ose SRS ose SRS    
are        

 1 11 ˆ ˆˆ (0.75) (0.25) ,
2ose SRS F F  

                                                               (15) 

and 

 1 11ˆ ˆ ˆ(0.75) (0.25) .
2 log(3)ose SRS F F  

                                                    (16) 

The mth L-moment estimator, denoted as ,m of a probability distribution as explained in 
Hosking (1990), is given by 

 
1

:
0

11 1 ,   1, 2,...
m

j
m m j m

j

m
m

jm
 






 
   

 
                                                 (17) 

where :i n is defined as 

   : : : ( ),i n i n i nE X xf x




                                                                 (18) 

where    

   -1 -
:

1( ) ( ) 1- ( ) ( ).
( , - 1)

i n i
i nf x F x F x f x

B i n i



                                     (19) 

 
Using (17), the first and second L-moments, respectively, are given by 

 1 1:1 2 2:2 1:2
1    and   ,
2

            

where 
1

2:2
0

log ,
(2,1) 1

u udu
B u
           

and 

 
1

1:2
0

log 1- .
(1, 2) 1

u u du
B u
           
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Hence,  2:2 1:2 2     implies that   2:2 1:2 2
1 .
2

       

Now we calculate the estimated value of 1:2 2:2 and    by using  

 : ; :, , ,          1 ,
s n d

s d n i i n
i s

M a s d n X s d n
 



                                            (20) 

where 
1

.
1i

i n i n
a

s d s d
     

          
Here, ia  is the probability that in a subsample  

1: :,..., ,d d dX X  drawn without replacement from 1: :,..., ,n n nX X  as given in David and 
Nagaraja (2003). For 2d   and from (20), the estimated value of 1:2 2:2 and ,   respectively, 
are given by  

   
1 1

1:2 : :
1 1

11 2ˆ ,
1 1 2 1 1

2

n n

i n i n
i i

i n i
X n i X

n n n


 

 

   
          
 
 

   

and 

 
1 1

2:2 : 1:
1 1

11 2ˆ  X .
1 1 2 2 1

2

n n

i n i n
i i

i n i
X i

n n n


 


 

   
         
 
 

   

 Thus,  

     

   

1 1

2:2 1:2 1: :
1 1

1 1

1: :
1 1

2 2ˆ ˆ
1 ( 1)

2                X .
1

n n

i n i n
i i

n n

i n i n
i i

i X n i X
n n n n

i n i X
n n

 
 


 

 


 

   
 

      

 

 
 

The L-moment estimators, denoted as ˆˆ  and ,lme SRS lme SRS    respectively, are given by 

ˆ ,lme SRS SRSX                 
 and  

        
1 1

2:2 1:2 1: :
1 1

1 1ˆ ˆ ˆ  X .
2 1

n n

lme SRS i n i n
i i

i n i X
n n

  
 

 
 

        
                (21)         

Analogous to L-moments, the mth  LQ-moments, denoted as m ,  is given by  

 
1

:
0

11 1 ,   1, 2,...
m

j
m m j m

j

m
m

jm
 






 
   

 
                                                   (22) 

where :i m is defined by 

 1
: (0.50; , 1) .i n F qbeta i n i                      (23) 

Using (22), the first and second LQ-moments, respectively, are given by 

and 
1 1:1

2 2:2 1:2

,
1 ( ).
2

median 

  

 

 



 
                                                                                        (24) 
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Using (23), 1:2 2:2 and ,    respectively, are given by 

 1
2:2 (0.50;2,1)

(0.50;2,1)      log 0.881 ,
1 (0.50;2,1)

F qbeta

qbeta
qbeta



   



 
     


 

and 
 1

1:2 (0.50;1,2)

(0.50;1,2)     log 0.881 .
1 (0.50;1, 2)

F qbeta

qbeta
qbeta



   



 
     


 

Hence, 2:2 1:2 1.762       implies that   2:2 1:2ˆ ˆˆ .
1.762

 



  

The LQ-moments can be estimated in a straightforward manner by estimating the quantiles of 
order statistics. The estimator of the parameters based on LQ-moments, denoted as 

ˆˆ  and ,lqe SRS lqe SRS    respectively, are given by 

ˆ ,lqe SRS median                                                                                            (25) 
and 

        1 1
2:2 1:2

1 1ˆ ˆ ˆ ˆ ˆ0.50;2,1 0.50;1, 2
2 2lqe SRS F qbeta F qbeta    

     

                              1 11 ˆ ˆ(0.7071) (0.2929) ,
2

F F                  (26) 

where 1 1ˆ ˆ(0.7071) and (0.2929)F F   are the empirical estimates from data.  
 

4. Algorithm for Power Comparison  

Under SRS, to compare the power of  mnI  when different estimators are considered, the 
following algorithm is designed to calculate the critical values via Monte Carlo simulation:  

a) Let 1,..., nX X  be a random sample from logistic distribution with 0,  1,    
and ( ;0,1).oF x  

b) Given significance level * 0.05  , random sample of sizes 12,  18, 24, 36,n   
and window sizes 1,2,3,4.w                  

c) Estimate the parameters  and     from the sample by maximum likelihood 
estimators in equation (9), method of moment estimators in equation (10), order 
statistic estimators in equations (15) and (16), L-moment estimators in equation (21) 
and LQ-moment estimators in equations (25) and (26).  

d) Calculate the test statistic mnT I  using equation (8).              

e) Repeat the steps (1)-(4) 20, 000 times to get 1 20,000,...,  .T T  

f) Determine the critical value *d


 of  T  which is given by the *(1 )100th  quantile 

of the distribution of  1 20,000,...,  .T T  
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      Next, to calculate the power of  T

 

at ,H  the alternative distribution 1,H  the simulation 
is needed. So, the following algorithm is designed: 

a) Let 1,..., nX X  be a random sample from .H  
b) Given significance level * 0.05  , random samples of size 12,  18, 24, 36,n   

and window sizes 1,2,3,4.w                  
c) Estimate the parameters  and     from the sample by maximum likelihood 

estimators in equation (9), method of moment estimators in equation (10), order 
statistic estimators in equations (15) and (16), L-moment estimators in equation (21) 
and LQ-moment estimators in equations (25) and (26). 

d) Calculate the test statistic  mnT I  using equation (8).              

e) Repeat the steps (1)-(4) 20, 000 times to get 1 20,000,...,  .T T  

f) To calculate the power, determine *

20,000

1

1( ) ( )
20,000 t

t
T I T d






  , where (.)I  

stands for indicator function.  
 

5. Simulation Results 
In order to assess the performance of the tests statistics under  simple random sampling, many 
alternative distributions are studied. The distributions selected are five symmetric 
distributions, namely, normal, Laplace, Cauchy, Student t and logistic, and also three 
asymmetric distributions, namely, lognormal, exponential and Weibull.  
     In this section, to calculate the critical points and power of the test statistics, a Monte Carlo 
simulation of 20,000 iterations according to the algorithms of Section 4 is conducted. The 
powers of the tests are computed and compared for different sample sizes, i.e. 

12,  18, 24, 36,n   and different alternative distributions, i.e.  (0,  1),Normal  
(0,  .7),Logistic  (0,  1),Laplace  (12),StudentT  (4),StudentT  (0,  1),Cauchy  

(1),Exponential  ( (1.5),  2),Weibull   (2,  .5)Weibull  and ( 0.2,  .4).Lognormal   The 
comparisons are made for the cases when the data are quantified via SRS and RSS. 
Based on the simulation, critical values for the level of significance * 0.05   are 
determined and given in Table 7.6. Also, the power and the efficiency of the test given that 

* 0.05   when different distributions are considered under 1H  are reported in Tables 1- 10 
and  Tables 11 – 21 respectively.  
 



 
Goodness of fit test for logistic distribution involving Kullback-Leibler information  

 
  

117 

Table 1: Critical values for the test statistics mnI  for different sample sizes 12,  18, 24, 36,n   

window sizes 1,2,3,4  andw  * 0.05   
 

 SRS 

n w mle moe ose lme lqe 

12 1 .582        .604 .501 .679 .868 
 2 .601 .588 .712 .692 .852 
 3 .567 .574 .685 .667 .814 
 4 .582 .593 .701 .691 .846 
18 1 .627 .637 .691 .669 .893 
 2 .456 .459 .534 .498 .751 
 3 .415 .432 .502 .456 .725 
 4 .432 .443 .503 .474 .717 
24 1 .553 .561 .606 .582 .835 
 2 .382 .382 .442 .403 .695 
 3 .339 .353 .408 .365 .643 
 4 .340 .343 .402 .364 .653 
36 1 .482 .488 .516 .491 .569 
 2 .303 .315 .348 .327 .405 
 3 .268 .270 .305 .279 .366 
 4 .257 .258 .288 .267 .346 

 
 
 
 

Table 2: Power estimates of the mnI  test statistic under SRS for Normal and Logistic alternative distributions     

with different sample sizes 12,  18, 24, 36,n  window sizes 1,2,3,4  andw  * 0.05   
 

 
 
 
 
 
 

 (0,  1)Normal  (0,  .7)Logistic  

n w mle moe ose lme lqe mle moe ose lme lqe 

12 1 .050 .051 .045 .050 .038 .049 .048 .050 .048 .044 
 2 .054 .060 .044 .051 .033 .051 .047 .047 .050 .049 
 3 .061 .060 .050 .051 .033 .051 .049 .050 .049 .044 
 4 .071 .057 .048 .051 .032 .051 .048 .065 .049 .047 
18 1 .052 .052 .050 .052 .030 .048 .050 .052 .046 .045 
 2 .052 .060 .048 .057 .031 .051 .050 .046 .047 .049 
 3 .075 .068 .051 .060 .031 .046 .047 .049 .048 .051 
 4 .068 .072 .058 .068 .031 .052 .051 .068 .047 .048 
24 1 .060 .060 .052 .058 .031 .050 .044 .051 .044 .048 
 2 .050 .062 .058 .058 .030 .050 .045 .048 .043 .049 
 3 .079 .065 .062 .067 .028 .051 .045 .044 .046 .049 
 4 .084 .080 .066 .067 .025 .047 .045 .082 .044 .044 
36 1 .060 .061 .063 .056 .038 .045 .050 .049 .046 .048 
 2 .055 .071 .062 .068 .032 .048 .047 .050 .043 .048 
 3 .076 .082 .070 .076 .033 .048 .048 .046 .048 .044 
 4 .085 .092 .080 .085 .037 .044 .058 .117 .047 .046 
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Table 3: Power estimates of the mnI  statistics under SRS for Laplace and Student t alternative distributions with 

different sample sizes 12,  18, 24, 36,n    window sizes 1,2,3,4  andw  * 0.05   
 

 
(0,  1)Laplace   (12)StudentT  

n w mle moe ose lme lqe mle moe ose lme lqe 

12 1 .051 .051 .065 .047 .101 .050 .046 .050 .044 .032 
 2 .051 .043 .076 .051 .102 .051 .047 .042 .043 .036 
 3 .051 .048 .076 .050 .101 .052 .049 .044 .038 .033 
 4 .049 .046 .074 .041 .109 .057 .048 .044 .052 .038 
18 1 .048 .056 .088 .051 .137 .048 .046 .047 .041 .037 
 2 .045 .051 .099 .051 .136 .051 .049 .047 .049 .034 
 3 .041 .046 .084 .048 .138 .048 .050 .048 .051 .033 
 4 .031 .038 .076 .038 .130 .056 .053 .049 .058 .038 
24 1 .056 .061 .101 .050 .161 .048 .046 .046 .047 .031 
 2 .052 .057 .105 .050 .162 .051 .052 .047 .049 .030 
 3 .051 .052 .102 .046 .170 .050 .049 .047 .052 .032 
 4 .032 .040 .085 .040 .162 .057 .052 .050 .051 .032 
36 1 .074 .075 .123 .046 .199 .051 .050 .047 .051 .033 
 2 .075 .085 .141 .052 .210 .055 .050 .048 .049 .033 
 3 .066 .080 .148 .046 .211 .051 .053 .046 .052 .032 
 4 .052 .062 .128 .046 .206 .065 .054 .052 .060 .030 

 
 
 
Table 4: Power estimates of the mnI  statistics under SRS for Student t and Cauchy alternative distributions with 

different sample sizes 12,  18, 24, 36,n    window sizes 1,2,3,4  andw  * 0.05   
 

 
(4)StudentT   (0,  1)Cauchy  

n w mle moe ose lme lqe mle moe ose lme lqe 

12 1 .052 .058 .061 .053 .067 .612 .401 .470 .310 .510 
 2 .059 .052 .068 .055 .075 .326 .402 .490 .330 .523 
 3 .058 .060 .068 .054 .072 .309 .362 .491 .325 .537 
 4 .056 .054 .062 .054 .074 .270 .312 .480 .321 .523 
18 1 .050 .063 .070 .055 .081 .612 .562 .645 .460 .672 
 2 .057 .061 .076 .061 .082 .305 .582 .663 .470 .681 
 3 .056 .061 .071 .060 .083 .471 .530 .658 .462 .682 
 4 .046 .053 .062 .055 .081 .381 .465 .621 .448 .685 
24 1 .058 .068 .070 .052 .084 .608 .685 .743 .630 .778 
 2 .060 .070 .078 .056 .088 .630 .704 .772 .650 .785 
 3 .056 .067 .076 .055 .090 .632 .688 .753 .645 .776 
 4 .051 .054 .063 .048 .091 .534 .632 .730 .602 .774 
36 1 .062 .072 .076 .072 .101 .790 .835 .870 .820 .886 
 2 .063 .081 .083 .073 .108 .623 .855 .890 .840 .894 
 3 .063 .076 .082 .075 .111 .822 .845 .893 .842 .893 
 4 .051 .061 .071 .060 .095 .785 .824 .872 .827 .885 

 
 
 
 
 
 



 
Goodness of fit test for logistic distribution involving Kullback-Leibler information  

 
  

119 

 
Table 5: Power estimates of the mnI  statistics under SRS for Gamma and Weibull alternative distributions with 

different sample sizes 12,  18, 24, 36,n   window sizes 1,2,3,4  andw  * 0.05   
 

 (1)Exponential   ( (1.5),  2)Weibull   

n w mle moe ose lme lqe mle moe ose lme lqe 

12 1 .313 .326 .272 .372 .169 .460 .441 .361 .511 .272 
 2 .420 .413 .301 .390 .192 .522 .552 .421 .524 .272 
 3 .301 .439 .319 .420 .182 .540 .575 .427 .552 .283 
 4 .492 .476 .322 .453 .183 .581 .598 .425 .580 .281 
18 1 .518 .518 .418 .555 .227 .648 .725 .575 .680 .355 
 2 .652 .713 .565 .649 .314 .829 .831 .723 .774 .426 
 3 .766 .701 .550 .675 .237 .811 .813 .704 .801 .402 
 4 .710 .719 .576 .711 .271 .812 .821 .719 .813 .393 
24 1 .654 .669 .590 .691 .301 .792 .806 .738 .782 .487 
 2 .781 .802 .701 .740 .285 .882 .881 .819 .852 .472 
 3 .831 .841 .765 .790 .311 .903 .902 .851 .903 .490 
 4 .862 .861 .782 .863 .314 .917 .926 .872 .923 .532 
36 1 .836 .855 .802 .821 .711 .916 .918 .893 .891 .889 
 2 .903 .905 .877 .872 .792 .935 .935 .928 .922 .893 
 3 .928 .926 .916 .922 .830 .939 .938 .935 .937 .909 
 4 .911 .961 .923 .949 .864 .958 .952 .951 .957 .924 

 
 
 

Table 6: Power estimates of the mnI  statistics under SRS for Weibull and Lognormal alternative distributions 

with different sample sizes 12,  18, 24, 36,n   window sizes 1,2,3,4  andw  * 0.05   
 

 (2,  .5)Weibull    ( 0.2,  .4)Lognormal   

n w mle moe ose lme lqe mle moe ose lme lqe 

12 1 .191 .059 .058 .058 .050 .173 .183 .154 .220 .119 
 2 .273 .076 .066 .065 .041 .310 .236 .183 .244 .115 
 3 .318 .099 .063 .074 .043 .327 .256 .201 .253 .126 
 4 .410 .096 .060 .086 .041 .329 .293 .207 .285 .123 
18 1 .220 .092 .081 .111 .040 .284 .275 .202 .292 .147 
 2 .377 .112 .086 .115 .041 .291 .372 .262 .311 .138 
 3 .378 .119 .101 .115 .037 .426 .405 .301 386 .123 
 4 .380 .125 .102 .122 .035 .423 .432 .292 .413 .137 
24 1 .251 .102 .093 .155 .032 .330 .371 .333 .402 .152 
 2 .393 .135 .105 .175 .035 .501 .515 .382 .521 .152 
 3 .429 .144 .109 .181 .034 .584 .572 .432 .551 .155 
 4 .474 .193 .126 .186 .033 .582 .597 .444 .601 .171 
36 1 .327 .139 .122 .240 .058 .481 .504 .414 .573 .362 
 2 .461 .199 .168 .240 .073 .665 .717 .609 .670 .565 
 3 .589 .241 .195 .263 .084 .746 .772 .642 .751 .513 
 4 .610 .280 .225 .287 .087 .726 .755 .641 .736 .478 
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From the above tables, we make the following remarks: 

a) The percentage points for the test decrease as the sample size n increases. 

b) The power increases as the sample size n increases. 

c) The power increases as the window size m increases. 

d) In the case of moment estimator, the test has the highest power for Normal, Logistic, 
Student (12)T ,  and  Exponential distributions.                      

e) In the case of L-Moment estimator, the test has the highest power for 
( (1.5),  2)Weibull    and lognormal distributions.                   

f) In the case of Maximum Likelihood estimator, the test has the highest power for 
(2,  .5)Weibull  distribution.   

g) When the estimators are compared, the test considered has the lowest power for   
(2,  .5)Weibull , and highest power for Cauchy. 

 

6. Conclusion 

An accurate estimation of parameters of the logistic distribution in statistical analysis is 
importance. In this paper, we have introduced a test statistic of goodness of fit for logistic 
distribution based on Kullback-Leibler information measure. We considered ten different 
distributions under the alternative hypothesis. It is found that the test statistics based on 
estimators found by moment and order statistic methods have the highest power, except for 
Weibull and Lognormal distributions. In the case of Cauchy, the test is found to have the 
highest power for all estimators but the test has the lowest power for  (2,  .5)Weibull . The 
theory developed could be extended easily to other distributions. Also, we can apply the test 
statistics considered under RSS, extreme RSS and median RSS.  
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