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ABSTRACT 

The identification of essential proteins is theoretically and practically important as it is essential 
to understand the minimal surviving requirements for cellular lives, and it is fundamental 
of drug development. As conducting experimental studies to identify essential proteins are 
both time and resource consuming, here we present a computational approach in predicting 
them based on network topology properties from protein-protein interaction networks of 
Saccharomyces cerevisiae, Escherichia coli and Drosophila melanogaster. The proposed 
method, namely EP3NN (Essential Proteins Prediction using Probabilistic Neural Network), 
employed a machine learning algorithm called Probabilistic Neural Network as a classifier to 
identify essential proteins of the organism of interest. EP3NN uses degree centrality, closeness 
centrality, local assortativity and local clustering coefficient of each protein in the network for 
such predictions. Results show that EP3NN managed to successfully predict essential proteins 
with an average accuracy of 95% for our studied organisms. Results also show that most of the 
essential proteins are close to other proteins, have assortativity behaviour and form clusters/
sub-graph in the network.

Keywords: essential protein; machine learning algorithms; neural networks; protein interaction 
networks 

ABSTRAK 

Pengenalpastian protein utama adalah penting secara teori dan praktikal kerana ia penting 
untuk memahami keperluan minimum bagi kehidupan sel, dan ia menyediakan asas untuk 
pembangunan dadah/ubat. Memandangkan kajian untuk mengenal pasti protein utama yang 
dijalankan secara eksperimen memerlukan tempoh atau masa yang lama serta sumber yang 
terhad, di sini dibentangkan pendekatan pengkomputeran dalam meramal protein-protein 
utama berdasarkan sifat-sifat topologi rangkaian daripada rangkaian interaksi protein bagi 
Saccharomyces cerevisiae, Escherichia coli dan Drosophila melanogaster. Kaedah yang 
dicadangkan, iaitu EP3NN (Ramalan Protein Utama menggunakan Rangkaian Neural 
Berkebarangkalian), menggunakan al-Khwarizmi pembelajaran mesin, iaitu rangkaian neural 
berkebarangkalian sebagai pengelas untuk mengenal pasti protein utama organisma-organisma 
tersebut. EP3NN menggunakan kepusatan darjah, kepusatan keakraban, assortativiti tempatan 
dan pekali kelompok tempatan bagi setiap protein dalam rangkaian tersebut. Hasil kajian 
menunjukkan bahawa EP3NN berjaya meramal protein utama dengan purata ketepatan 95 % 
bagi organisma-organisma yang dikaji. Keputusan juga menunjukkan bahawa sebahagian besar 
protein utama berkedudukan dekat dengan protein lain, mempunyai tingkah laku assortativiti 
dan membentuk kelompok/subgraf dalam rangkaian. 

Kata kunci: protein utama; al-Khwarizmi pembelajaran mesin; rangkaian neural; rangkaian 
interaksi protein 
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1.	 Introduction

Essential proteins are proteins that are indispensable to support cellular life. These proteins 
constitute a minimal protein set in rich medium containing all nutrients required for a living cell. 
If the essential proteins are absent, it is sufficient to confer a lethal phenotype upon an organism 
(Cole 2002; Zhang et al. 2004). Therefore, the functions encoded by these proteins are crucial 
for survival and a foundation of life. The identification of essential proteins is important not 
only for understanding minimal requirement for cellular life, but also for practical purposes. 
For example, in drug development, the essential proteins make excellent potential new drugs 
and vaccines to treat and prevent diseases, and improved diagnostic tools to detect infection 
more reliably (Cole 2002). 

Predictions of essential proteins have been performed experimentally since 2002 by various 
procedures such as single protein knockouts (Giaever et al. 2002), Ribonucleic Acid (RNA) 
interference (Cullen & Arndt 2005), conditional knockouts (Roemer et al. 2003), and proteintic 
footprint technique (Gerdes et al. 2003). These challenging procedures are however very 
time and resources consuming – even in well studied organisms. Therefore, computational 
approaches to accurately predict protein essentiality would have great values. Essential proteins 
in Saccharmoyces cerevisiae (baker’s yeast) and Escherichia coli have been predicted by 
implementing Naïve Bayes as a classifier based on features obtainable directly from sequence 
data such as, experimental characteristics, genomic characteristics, and protein characteristic 
(Gustafson et al. 2006). Seringhaus et al. (2006) has proposed a new hybrid classifier that 
combined the output of diverse classification schemes including decision trees, Naïve Bayes, 
and a logistic regression model to predict the essential protein in baker’s yeast using exclusively 
on sequence features of proteins (Seringhaus et al. 2006). 

Besides using sequence features of protein, several studies have also taken advantage of the 
abundance of experimental data available for protein interaction networks (PIN) to understand 
major characteristics of essential proteins. Parameters of PIN topology such as clustering 
coefficient, closeness, and average degree are also considered to identify essential proteins 
(Estrada 2006; Silva et al. 2008; Acencio & Lemke 2009). Centrality measures based on graph 
spectral properties of the network show that protein indispensability does not depend on how 
close a protein is to many other proteins, but related on how much a protein implicated in 
clusters of protein forming a large number of sub graph in the network (Estrada 2006). 

Network Topology-based Prediction of Protein Essentiality (NTPGE) has been proposed 
to predict essential proteins in integrated molecular networks comprising proteins’ physical, 
metabolic and transcriptional regulation interactions (Silva et al. 2008). This proposed classifier 
relied mostly on proteins’ physical and metabolic interactions, and is only applicable for 
organisms whose corresponding integrated molecular network has been already constructed. 
Combination of network topology features, cellular compartments and biological process gave 
better prediction performance where the number of protein physical interactions, the nuclear 
localisation of proteins and the number of regulating transcription factors are the most important 
factors determining protein essentiality (Acencio & Lemke 2009). These findings disagree 
with Coulomb’s statement: i.e., protein essentiality is largely unrelated to many parameters of 
protein network topology including clustering coefficient and the average degree of the nearest 
neighbours (Coulomb et al. 2005). 

In this study, we identify essential proteins in three different organisms based on selected 
features of protein networks topology. The features are degree centrality, closeness centrality, 
local assortativity and local clustering coefficient for every protein in a network. From our 
knowledge, the combination of these features has not been considered in this problem yet. 
These topological features successfully identify essential proteins and provide more information 
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in order to understand essential proteins in Saccharmoyces cerevisiae, Escherichia coli and 
Drosophila melanogaster. We chose these organisms in our study because they are important 
model organisms in most biological area. Saccharmoyces cerevisiae –also known as baker’s 
yeast – is a completely sequenced organism and one of the most intensively studied eukaryotic 
model organisms in molecular and cell biology. Baker’s yeast has developed as a model 
organism because it is small with short protein ration time and can be easily cultured (Gofieau 
et al. 1996). Escherichia coli also completely sequenced prokaryote model organism. Its strains 
are harmless but can cause serious food poisoning in humans (Hudault et al. 2001; Vogt & 
Dippold 2005). Therefore, it is important to understand proteins activities in this organism in 
identifying essential proteins. Besides these two model organisms, we also considered other 
eukaryotic model organism, Drosophila melanogaster, also known as fruit fly. Drosophila 
melanogaster was among the first organisms used for proteintic analysis in understanding 
proteins behaviour in other eukaryotes, including humans (Celniker & Rubin 2003; Adams et 
al. 2000). It is important to study the proteins functionality in this organism as it leads to more 
information in human’s network.

Our study focuses on predicting essential proteins in these organisms and identifying the 
characterisation of predicted essential proteins based on their networks topological properties. 
This paper is organised into six sections. Section 1 introduces the essential proteins and research 
background on essential proteins prediction. Section 2 described our problem statement, 
followed by details on the prediction method in Section 3. Results and discussion are presented 
in Sections 4 and 5, respectively, before conclusion in Section 6.

2.	 Problem Statement

Prediction of essential proteins in protein network can be formulated as follows: Given an 

undirected graph G = (V ,E)  where V = v1,v2,v3,…,vN( )  is a set of nodes and E = eij | i, j = 1,2,3,…,N{ }  
is a set of edges in a graph with number of nodes, N. A graph G represents protein network with 
protein and interaction between two proteins represented as node and edge, respectively. Find 
any nodes in the given graph that play roles of essential node with respect to unknown relations 
among features in a set of network topology features, F = f1, f2,…, fM( )  where M is the number 
of considered features.

3.	 Method

EP3NN consists of three main stages: (1) datasets preparation, (2) defining network topological 
properties, and (3) classifier development. We developed the datasets by filtering and mapping 
the data from two databases for protein networks and essential proteins information. Then, we 
defined the four network topological properties by modifying their formulas to be suitable/
applicable to our considered networks. All these properties were computed and applied as a set 
of features to the enhanced classifier.

3.1	 Datasets Preparation

Three well-studied organisms are considered in predicting essential proteins (Saccharmoyces 
cerevisiae, Escherichia coli and Drosophila melanogaster). Protein-protein physical interaction 
networks for each organism were downloaded from Database of Interacting Protein (DIP) 
(Xenatios 2000). DIP combines experimentally determined protein-protein interactions 
information from various sources and it is updated in regular basis (Xenarios 2000). In this 
study, we assume that protein networks as undirected networks with similar number of in- and 
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out-degrees. Dataset of protein networks for each organism contains a set of nodes and a set of 
links to represent proteins and their interactions, respectively. Here, if protein x is connected to 
protein y through link a, and protein y is connected to protein x through link b; then, datasets 
are filtered by following assumptions:

•	 If both links are exists in dataset, both linked are replaced with average of a and b.
•	 If either link a or link b is exist in dataset, the link are assumed to be bi-directional.

Overall information of these networks is shown in Table 1. Information of essential proteins for 
each organism obtained from the Database of Essential Gene (DEG) (Zhang et al. 2004). DEG 
consists of all the essential proteins currently available from various experimental procedures 
such as antisense RNA technique, transposon mutaproteinsis, high density transposon 
mutaproteinsis and comparative genomics (Zhang et al. 2004). The essential proteins datasets 
for each organism were mapped four times based on the DEG id. Since there are no specific 
tools for id mapping, we mapped the DEG id to DIP id using four id mapping processes. After 
the id mapping, our datasets consist of 1110 of Baker’s yeast’s, 713 of Escherichia coli’s 
and 339 of Drosophila melanogaster’s known – broadly accepted – essential proteins. The 
information of essential proteins for each organism is used as positive examples in predicting 
essential proteins.

Table 1: Number of proteins and interactions for every organism in DIP

Organisms # Proteins # Interactions
Saccharmoyces cerevisiae 4941 17566
Escherichia coli 1848 6964
Drosophila melanogaster 528 706

3.2	 Network Topological Features

In this study, we are not considering all possible network topological features in predicting 
essential proteins as in Silva (2008) and Acencio (2009). There are four selected features 
namely degree centrality, closeness centrality, local assortativity and local clustering coefficient 
for every proteins in the network. Even though betweeness centrality always been considered in 
network analysis together with degree centrality and closeness centrality, it has been proven in 
Estrada (2006) that essential proteins are not influenced by betweeness centrality measurement. 
These features have been chosen and modified (degree centrality and closeness centrality) based 
on their original definition in networks/graphs. We strongly believe that these characteristic 
could significantly influence the prediction process and characterisation of essential proteins.

3.2.1.	Degree Centrality (DC)

Let G = (V ,E)with N nodes be an undirected graph where V and E is a set of nodes and edges, 
respectively. The degree centrality for every node, v, is defined as follows:

DC(v) = deg(v)
N −1

where deg(v) := e | e ∈E ∧ v ∈V{ }  is a number of links for v. Degree centrality value increases 
linearly to the number of edges. Therefore, nodes with higher degree centrality values are more 
likely to be main connectors in a network (Junker & Schreiber 2008), as shown in Figure 1.
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Figure 1: An example network with highest degree is 9 (black node) and the lowest degree is 3 (grey node)

3.2.2.	Closeness Centrality (CC)

The closeness centrality of node v is defined as:

CC(v) =
N
d(v,vi )i∈v

∑

Where ( ).d 	
   is the shortest path from node v to vi for all nodes in the network. The closeness 
centrality value represents the communication of node v to all reachable nodes in the network. 
Nodes with higher closeness centrality values are more important as they are closer to more 
nodes in a network compared with others (Junker & Schreiber 2008).

3.2.3.	Local Assortativity (LA)

Assortativity is the tendency in networks where nodes mostly connected with similar nodes 
based on degree of nodes. In other words, highly-connected nodes have connection with other 
highly-connected nodes in the network, and vice versa, as shown in Figure 2.

Figure 2: A network with assortativity nodes. Both highly connected black nodes are connected each other as 
shown in thicker lines, as well as connections between low degree nodes (white nodes)

Local assortativity value for every node in the network can be defined as:

LA v( ) =
j j +1( ) k − µq( )

2Mσ q
2
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where j, M and k  are degree of v, number of links in the network and the average degree of 

node vs. neighbours, respectively; µq  and σ q  are mean and standard deviation of the remaining 
degree distribution, q(k), respectively. q(k),is defined as:

q k( ) = p k +1( )2
jp j( )

1≤ j≤N
∑

where p(k) is network degree distribution (Newman 2002; Piraveenan 2009; 2012).

3.2.4.	Local Clustering Coefficient (LCC)

Local clustering coefficient measures the probability that two nodes with common neighbours 
are connected. Local clustering coefficient can be computed as:

LCC v( ) = 2E v( )
kv kv −1( )

where kv is degree of v and E .( )  is the number of edges between neighbours of v. If a node 
has high local clustering coefficient value, this node indicates local cohesiveness and a high 
tendency to form groups (Junker & Schreiber 2008), as shown in Figure 3.

Figure 3: An example of local clustered nodes in the network. Dashed circles in the network show the clustered 
black nodes with higher value LCC compare to other nodes in the network

3.3	 The Enhanced Probabilistic Neural Network

In this paper, we implement an artificial neural network (ANN) as the classifier; ANNs are 
computational models to simulate structure of neural networks. Such networks typically consist 
of interconnected neurons and processes information. ANN is usually deployed to model 
complex or unknown relationships among input and outputs (Taheri & Zomaya 2006a;2006b). 

The radial basis networks called probabilistic neural networks (PNN) have been introduced 
by Specht (Specht 1988;1990). The three-layer-PNN, as shown in Figure 4, is developed to 

solve the classification problems where the radial basis function, e− x
2
is chosen as the transfer 

function for neurons in the hidden layer (radial basis layer). The first layer of PNN receives an 
input vector and computes its distances from the input vector to all training input vectors; the 
second layer sums these contributions for each class of inputs and produces a vector of values 
between [0 1]. The output layer classifies the vector by selecting the maximum value of the 
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vector elements and produces a ‘1’ for the chosen class and ‘0’ for the others. In this study, the 
final output of PNN has two classes for essential and non-essential proteins.

In order to develop an efficient design of PNN, our classifier iteratively creates one radial 
basis neuron at a time. This procedure is repeated until either the final sum-squared error falls 
beneath a predefined error goal or a predefined maximum number of neurons is reached. In this 
case, the error goal is 0 and the maximum number of neurons is the number of proteins in the 
protein network.

Figure 4: Probabilistic neural network architecture

4.	 Results 

The EP3NN has been tested on three different organisms: Saccharmoyces cerevisiae, Escherichia 
coli and Drosophila melanogaster by considering their network topology properties (DC, CC, 
LA, and LCC). We assumed that protein networks for all considered organisms have a power 

law (P d( ) ∝ d−α ) or scale free of degree distributions as proven in (Wagner 2003; Lee et al. 
2005; Hakes et al. 2008; Ng & Huang 2004; Bhan et al. 2002; Colizza et al. 2005). The average 
values of α for Saccharmoyces cerevisiae, Escherichia coli and Drosophila melanogaster are 
empirically set to 2.0, 1.7 and 1.9, respectively. While calculating the closeness centrality, CC, 
for every protein, we employed Djisktra algorithm (Masters 1995) to compute shortest paths in 
the network.

The classifier, PNN has been trained by a gradient descent algorithm with adaptive learning 
rate back-propagation and tested using 10-fold cross validation for each organism. As a result, 
PNN have different number of neurons in radial basis layer for each organism. PNN for 
Saccharmoyces cerevisiae consists of 1776 neurons, Escherichia coli has 271 neurons, and 
Drosophila melanogaster has 86 neurons. EP3NN successfully determined essential proteins 
and non-essential proteins for every organism based on their network topology properties.
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Figure 5: Performance of EP3NN compared to other methods

5.	 Discussion

5.1.	Essential Proteins Prediction

In this study, we chose the best three available prediction methods namely Ref1 in Gustafson 
et al. (2006), Ref2 in Silva et al. (2008), and Ref3 in Seringhaus et al. (2008) to compare 
our results with. Here we compared EP3NN performance with other methods on benchmark 
organism, baker’s yeast. The EP3NN achieved 95% of accuracy with perfect sensitivity of 1, 
and specificity of 0.92. Figure 5 shows that EP3NN performance is the best among the three 
methods based on the Receiver Operating Characteristic (ROC) curve. Both Ref1 and Ref2 
used the combination information of protein network topology properties and genomic features, 
with TPR of 0.70 and 0.82, respectively.

The hybrid prediction method in Ref3 predicts essential proteins with 0.69 of true positive 
rate (TPR) but very low FPR of 0.19. This method was unable to determine the non-essential 
proteins probably due to the lack of information about the proteins’ network topology –only 
genomic features have been considered to date. However, if only network topology properties 
have been considered in the essential proteins prediction, higher TPR and FPR can be achieved 
as proven in this paper and in Gustafson et al. (2006).

As shown in Table 2, EP3NN successfully classify essential proteins and non-essential 
proteins for other two organisms, Escherichia coli and Drosophila melanogaster. These two 
organisms have never been tested for essential proteins prediction before. It is shown that 
EP3NN is able to achieve consistent performance for other than baker’s yeast with various sizes 
of protein networks.

Table 2: Prediction performances for all organisms

Organisms Sens. Spec. Acc.
Saccharmoyces cerevisiae 1.0 0.9189 0.9595
Escherichia coli 1.0 0.9007 0.9503
Drosophila melanogaster 1.0 0.8958 0.9479
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5.2.	Centrality of Essential Proteins

In this study, we considered two types of centralities: degree centrality and closeness centrality. 
Both centralities are important to verify the functionality of every node in a network. Since 
proteins with the same degree can have various degree centrality, closeness centrality, local 
assortativity and local clustering coefficient values, one degree can be represented for them; 
e.g., the average value for all protein with a given degree k. 

Degree centrality of a network increases linearly to number of degree as shown in Figures 
6, 7, and 8. In Figure 6, almost all predicted essential proteins in baker’s yeast have number 
of degrees less than 75. Even though only less than 1% of essential proteins have degree more 
than 100 (minor case), EP3NN was still able to recognise them as desired essential proteins. 
Escherichia coli network shows similar pattern as baker’s yeast where most of the essential 
proteins have a degree less than 80 and a few proteins with degrees greater than 100 (Figure 
7). However, most of essential proteins in Drosophila melanogaster have degrees less than 
10 (Figure 8). This is due to small proteins networks consists of only 502 proteins and 706 
interactions with maximum number of degree is 19.

Figure 6: Degree centrality of essential proteins in Saccharmoyces cerevisiae

Figure 7: Degree centrality of essential proteins in Escherichia coli
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Figure 8: Degree centrality of essential proteins in Drosophila melanogaster

The closeness centrality averages for essential proteins in Saccharmoyces cerevisiae are 
between 0.2 and 0.35 as shown in Figure 9. The same graph pattern also shown in Figure 10 
for Escherichia coli, where the average closeness centrality values are in the range of [0.3 0.6). 
Essential proteins in Drosophila melanogaster achieve positive values of closeness centrality 
in range of [0.2 0.45). These positive numbers show that the essential proteins are close to all 
reachable proteins in the network. The higher degree proteins are closer to other proteins and 
therefore important connector in a network. 

However, proteins with degree of 1 in Figure 10 and 11 have higher closeness centrality 
compare to other proteins. This phenomenon shows that these proteins are essential regardless 
to the number of their neighbours. Even though each of these proteins has only one neighbour, 
we believe their neighbours were highly connected with other proteins in the network and 
consequently closer to all reachable proteins. These proteins have very important roles as they 
are main connectors to other proteins in a network.

Figure 9: Closeness centrality of essential proteins in Saccharmoyces cerevisiae
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Figure 10: Closeness centrality of essential proteins in Escherichia coli

Figure 11: Closeness centrality of essential proteins in Drosophila melanogaster

5.3.	 Assortativeness of Essential Proteins

Assortativeness of predicted essential proteins can be evaluated based on the values of local 
assortativity. Figures 12, 13 and 14 show the distributions of the average of local assortativity 
for each considered network. The local assortativity values in baker’s yeast are negatively 
correlated with the proteins’ degree. Most of its essential proteins with degrees less than 
80 achieve higher local assortativity compare to highly connected essential proteins, i.e., 
essential proteins with degrees greater than 100 as shown in Figure 12. For other organisms 
(Escherichia coli and Drosophila melanogaster), there are uneven distributions although high 
local assortativeness for every essential protein was achieved as shown in Figures 13 and 14, 
respectively. These figures both show the assortativeness behaviour where these proteins are 
connected with similar proteins based on proteins’ degrees.
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The assortativeness of the predicted essential proteins in all considered organisms revealed 
their connection behaviour among other proteins in the networks. These proteins are important 
as a main connector to transport/transfer its products to other cluster of proteins. However, there 
are some cases where the essential proteins have negative values of local assortativity, the average 
local assortativity for essential proteins with degree 1 are -0.001 and -0.004 for Escherichia 
coli and Drosophila melanogaster, respectively. These proteins are disassortative where they 
are connected with different proteins based on their proteins’ degrees; i.e., highly connected 
proteins have connection with low degree proteins and vice versa. The disassortativeness 
behaviour of these essential proteins agreed with their high closeness centrality values as in 
Figure 10 and 11. Therefore, these proteins are essential to their networks as they are connected 
to other essential proteins as well as to other proteins in the network.

 
Figure 12: Local assortativity of essential proteins in Saccharmoyces cerevisiae

 
Figure 13: Local assortativity of essential proteins in Escherichia coli

 
Figure 14: Local assortativity of essential proteins in Drosophila melanogaster
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5.4.	Cohesiveness of Essential Proteins

In this section, we try to study the relation between nodes’ degrees and their tendencies to 
form clusters – either weak or strong. Our study shows that the essential proteins in baker’s 
yeast achieve less than 0.5 of cohesiveness probability. The distribution of local clustering 
coefficient of this organism shows almost similar pattern of its distribution of assortativeness 
as shown in Figure 15. These values are negatively correlated to the degree of protein. Proteins 
with less than 50 degree have higher probability to form clusters where most of the neighbours 
are connected to each other. If not all higher degree proteins’ neighbours are connected to each 
other; weak clusters would be formed instead.

Figure 16 shows the distribution of local clustering coefficient of essential proteins in 
Escherichia coli. This organism consists of cohesiveness proteins with degree less than 80. 
More than 50% of the proteins have clustering coefficient greater than 0.5 and therefore form 
stronger clusters compared to other proteins regardless to the degree of proteins. Drosophila 
melanogaster have uneven distribution of local clustering coefficient of its essential proteins as 
shown in Figure 17. The probability of these proteins to form groups in the network is less than 
0.25, which is relatively low cohesiveness behaviour. As a result, groups formed by essential 
proteins in this organism have fairly weak connections among their neighbours, i.e., not all 
neighbours are connected to each other in the same group.

 
Figure 15: Local clustering coefficient of essential proteins in Saccharmoyces cerevisiae

 
Figure 16: Local clustering coefficient of essential proteins in Escherichia coli
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Figure 17: Local clustering coefficient of essential proteins in Drosophila melanogaster

Based on all considered network topology properties, all tested organisms have identical 
characteristics for their essential proteins; i.e.; most of the essential proteins are: (1) close to 
other reachable proteins in the network, (2) have assortativity behaviour, and (3) form a cluster 
of proteins, regardless to the degree of proteins. Our results are against Coulomb’s statement 
in Coulomb et al. (2005), saying that clustering coefficient is not related to essential proteins. 
It is mathematically proven here that the essential proteins can be identified by local clustering 
coefficient for all studied organisms. We also successfully proved that the closeness centrality of 
essential proteins is strongly related to their assortativeness in the protein’s network. Therefore, 
the predicted essential proteins play important roles in the network as a main connector to other 
proteins to transfer its functions to the neighbours as well as other proteins in the network.

6.	 Conclusion

In this study, we proposed a novel approach (EP3NN) for predicting essential proteins in 
Saccharmoyces cerevisiae, Escherichia coli and Drosophila melanogaster. EP3NN employed 
probabilistic neural network and four selected network topology properties – degree centrality, 
closeness centrality, local assortativity and local clustering coefficient – to predict essential 
proteins. EP3NN managed to successfully predict the essential proteins for our tested organisms 
with 95% of average accuracy. Results articulate the prediction capability of the EP3NN in 
various sizes of networks from as small as Drosophila melanogaster proteins network to as 
dense as Saccharmoyces cerevisiae proteins network.
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