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ABSTRACT  

Lifetime distributions that present bathtub-shaped failure rates are becoming increasingly 

important especially when dealing with medical data. In this research, a two-parameter bathtub 

hazard model was extended to incorporate covariates in the presence of right censored data. 

The parameter estimates were computed based on maximum likelihood estimation (MLE) 

method.  A simulation study was then executed to assess the performance of parameter 

estimates based on their bias, standard error (SE) and root mean square error (RMSE) at 

various censoring proportions and sample sizes. The results suggested that the performance of 

the estimator is better at larger sample size as it lower the standard error and root mean square 

error (RMSE). A decrease in censoring proportions yield smaller SE and RMSE values, 

whereas the values of bias decrease as the sample sizes and censoring proportions increase.  

Finally, the extended model was applied to a real medical data. Also, three confidence interval 

estimation (Wald, bootstrap-p, bootstrap-t) were obtained for each of the parameters of the 

model. The results suggested that the real data fitted the bathtub hazard model well.  

Keywords: bathtub hazard; covariates; right censored  

 

ABSTRAK  

Taburan jangka hayat yang yang mempunyai bentuk fungsi kadar kegagalan seperti tab mandi  

menjadi kian penting terutamanya apabila melibatkan data perubatan. Dalam kajian ini, model 

bathtub hazard dengan dua parameter dikembangkan dengan menambah kovariat bersama 

data tertapis kanan. Anggaran parameter diperoleh melalui kaedah penganggaran 

kebolehjadian maksimum (MLE). Seterusnya, kajian simulasi dibuat untuk menilai prestasi 

parameter berdasarkan nilai kecondongan, ralat piawai(SE), dan punca min kuasa 

ralat(RMSE) pada nilai perkadaran tapisan dan saiz sampel yang berbeza. Hasil analisis 

menunjukkan bahawa prestasi penganggar adalah lebih baik pada saiz sampel yang lebih 

besar, kerana ianya menghasilkan nilai SE dan RMSE yang lebih rendah.  Penyusutan dalam 

nilai perkadaran tapisan menghasilkan nilai SE dan RMSE yang lebih rendah, namun nilai 

kecondongan didapati semakin menurun dengan peningkatan saiz sampel dan nilai perkadaran 

tapisan. Akhir sekali, model yang telah dikembangkan ini diaplikasikan kepada data perubatan 

yang sebenar. Tiga kaedah ukuran kebolehpercayaan anggaran (Wald, bootstrap-p, bootstrap-

t) juga telah didapatkan untuk setiap parameter dalam model tersebut. Keputusan analisis 

mencadangkan model bathtub hazard sesuai diaplikasikan kepada data sebenar.  

Kata kunci: bathtub hazard; kovariat; tertapis kanan                      

1. Introduction 

Throughout the last decades, a number of research was devoted to the construction of lifetime 

distribution in modelling real-life data with more than traditional increasing and decreasing 

failure rates. There are several existing statistical distributions for modelling lifetime data 

where the distributions are named as “lifetime probability distributions” or simply known as 
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“life distribution” (Yousof et al. 2021). Early studies have proposed some parametric 

probability distribution to analyze real life data with bathtub-shaped rates. Smith and Bain 

(1975) suggested exponential power distribution and the distribution was further studied by 

Leemis (1986). Another distribution with four parameter was proposed by Gaver and Acar 

(1979). Hjorth (1980) investigated similar distribution with increasing, decreasing, or bathtub-

shaped failure rate function. Meanwhile, Mudholkar and Srivastava (1993)  suggested an 

exponentiated-Weibull distribution. Furthermore, some researchers have studied a new three-

parameter distribution that exhibit bathtub-shape, exponential-type family of distributions 

(Lemonte 2013); lognormal-power distribution with flexible behavior (Reed 2011); and two-

parameter modified Weibull extension (Xie et al. 2002). 

In this paper, by adding covariate with the presence of right-censored data, we extend a 

two-parameter bathtub hazard model that was initially proposed by Chen (2000). The 

cumulative distribution function (cdf) of the distribution is given by 

 

 (1) 

 

where 0   is a parameter that does not affect the shape of the failure rate function and 

0   is defined as the shape parameter. The corresponding survival function can be written 

as  
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The corresponding failure rate function is defined as  

 

( ) 1; ,  th t t e
   −=  (4) 

 

The first derivative of ( )h t is given by 

 

( ) ( )2' ; , 1th t t e t
     −= − +  (5) 

There have been some prior works that studied and discussed this bathtub hazard model 

(Sarhan et al. 2012;  Wu et al. 2004;  Wu 2008) among others. The distribution exhibits an 

increasing failure rate when 1  . Also, the model displays a bathtub-shaped failure rates 

when 1   which makes it as suitable distribution in modelling real lifetime datasets. In 

particular, bathtub hazard model provides a good alternative to other existing lifetime 

distribution due to its flexibility that can model both monotonic and non-monotonic failure 

rates.  Failure rate function is an important characteristic in modelling lifetime data. 

Increasing failure rate (IFR) and bathtub-shaped are among of interest in many lifetime 

studies. Unimodal failure rates can be commonly observed in medical studies such as heart or 

kidney transplantation where the patients tend to have an IFR during an adaptation period 

while a decreasing failure rate (DFR) can be seen afterward (Lemonte 2013). Bathtub curve 
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can be classified into three phases of hazard: early failure, random failure, and wear-out 

region (Lemonte 2013; Wang et al. 2015). A study of human mortality provides an example 

of bathtub-shaped failure rate, with a high infant mortality rate at the start, which rapidly fall 

to a low point and remains steady until accelerating again (Lemonte 2013). Also, bathtub-

shaped hazard can be seen in study of animal survival from birth and in the field of reliability 

such as failure of equipment (Xie et al. 2002). 

Wu et al. (2004) suggested a simple and exact statistical test for the shape parameter in 

bathtub hazard model due to its vital contribution. Furthermore, the exact confidence interval 

for the parameter was also discussed. Monte Carlo simulation was applied in order to find the 

critical values for the statistical test and to construct the confidence interval of the shape 

parameter. The results obtained from Monte Carlo simulation shows that the average lengths 

for the confidence intervals for the parameter are shorter compared to the intervals presented 

by the method in Chen (2000). The new statistical test proposed by Wu et al. (2004) was also 

suggested to be better and more powerful. In another study by Wu (2008), the estimation 

problem from the two parameters in bathtub hazard model was investigated by analyzing a 

progressively type-II censored sample using maximum likelihood estimation. In addition,   

Wu et al. (2004) proposed a method for constructing the exact confidence interval and joint 

confidence region for the parameters. Sarhan et al. (2012) discussed and studied the 

parameter estimation for the distribution. They used maximum likelihood and Bayes method 

to estimate the unknown parameters of this model. By analyzing real data set from (Lawless 

2003), the comparison between the point estimates obtained by both methods was made. 

Additional work by Chen and Gui (2020) have presented maximum likelihood estimations 

and confidence intervals for parameters in the model. Similarly, another recent work by 

Zhang and Gui (2022) discussed maximum likelihood estimations and presented asymptotic 

confidence interval for the parameters. Overall, there are few works related to bathtub hazard 

model as discussed above. Yet, these previous works do not extend the model such as 

incorporating any fixed or time-varying covariates in the model. There were several works 

involving different models which extended the model to accommodate covariates in the 

presence of censored data such as Gompertz model with right-censored data (Kiani et al. 

2012; Maarof et al. 2021); Gompertz model with right-, left- and interval-censored data 

(Kiani & Arasan 2013); log-logistic model  with right-censored data (Loh et al. 2015); log-

logistic model  with right- and interval-censored data (Lai & Arasan 2020) and generalized 

exponential model with interval-censored data (Al-Hakeem et al. 2022). To the best of our 

knowledge, no works has been done on bathtub hazard model specifically to estimate 

covariates with the presence of censored data such as right- or interval-censored data. 

As such, this study aims to extend the bathtub hazard model by incorporating covariate in 

the context of right-censored data. A simulation study was then conducted to assess the 

performance of the model by examining the value of bias, standard error (SE), and root mean 

square error (RMSE) at various sample sizes and censoring proportions(cp). Moreover, an 

application to a real data set using the extended model was also illustrated. Also, we 

computed confidence interval estimates for the parameters using Wald and bootstrap method.  
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2. Methodology 

2.1.  Bathtub hazard model with covariate 

The effects of covariates on survival time are incorporated in hazard function of the 

bathtub hazard model by allowing the parameter   as a function of covariates (Kiani et al., 

2012; Maarof et al., 2021). The function can be written as  

 

0 1 ix
i e

  − −
=  (6) 

 

Thus, based on hazard function specified in Eq. (4), the hazard function for a data set with a 

fixed covariate ix  where 1, 2,...,i n=  can be expressed as,  
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The vector of parameters for this model is 
0 1

( , , )   = . The estimation of the parameters 

was done via the method of maximum likelihood.  

2.2.  Maximum likelihood estimation 

The idea of construction of  actual likelihood function can be found in  Hosmer and 

Lemeshow (1999). It is based on the contribution of the triplet ( , , )t c x  where  the lower case 

letters in the triplet denote the actual observed values of variables T , C  and X  respectively. 

T  represents the actual observed time and C is the censoring indicator. In the case of the 

triplet ( ,1, )t x , 1c =  indicates that the observed value of t  measures the subject’s actual 

survival time (i.e. death from the disease). For this triplet, it is known that the survival time 

was exactly t . Therefore, the contribution to the likelihood for this triplet is the probability 

that a subject with covariate value x dies from the disease at time t  where this is given by the 

value of density function.  Hence, the overall likelihood of the bathtub hazard model for a 

sample of n  uncensored observations, , 1,2,...,i n=  can be written as 
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where it  is the observed survival time for the ith subject. 

To incorporate right censored data to the likelihood function given above, as mentioned 

earlier, a censoring indicator need to be defined where indicator 0 indicates observation that is 

right censored, 1 for observations that is not censored. Henceforth, the censoring indicator 

will be denoted by S. For ith observation, the censoring indicator is described as follows:  

 

1,  observation is not censored

0,  observation is right censored
is =





 

 

In the case of the triplet ( ,0, )t x , on the other hand, we know that the survival time was at 

least t . Consequently, the contribution to the likelihood function of this triplet is the 

probability that a subject with covariate value x  survives for at least t  time units where this 
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probability is given by the survival function. Under the independent observation assumptions, 

to get the full likelihood function, we therefore multiply the contribution of the triplets, a 

value of density function for an uncensored observation and a value of survival function for 

censored observation as given below, 

 

( ) 1{ } { ( )}i iS S
i if t S t −

 (9) 

 

Since the observations are assumed to be independent, thus the likelihood function for a 

sample of n observations, 1,2,...,i n= ,  is the product of the expression given in Eq. (9), 
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and the log-likelihood function is, 
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The observed information matrix 
1

0 1
ˆ ˆ ˆ[ ( , , )]i   

−
 can be found from second partial 

derivative of the log-likelihood function in Eq. (10) evaluated at maximum likelihood 

estimates where it gives us the estimated for variance and covariance. The Newton-Raphson 

iterative approach was used to obtain the MLE of the parameters. 

2.3.  Confidence interval estimates 

This section provides a brief discussion on three methods of confidence interval estimates 

that were used in this study. The first method is asymptotic normality confidence interval or 
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known as Wald interval. The Wald confidence interval is the most widely used interval 

technique in survival analysis. Bootstrapping techniques, on the other hand, have been proven 

to be more robust to model assumption violations. Bootstrap resampling methods have known 

as powerful tools in constructing inferential procedures (Léger et al. 1992).  Resampling is the 

process of repeated sampling from the original data set. In this research, two common 

bootstrap confidence interval estimation known as bootstrap-p (B-p) and bootstrap-t (B-t) 

were employed. 

2.3.1. Asymptotic confidence interval (Wald) 

Let ̂  be the maximum likelihood estimator for the vector of the parameters   and the log-

likelihood function of   is denoted by ( )l  . ̂  is known to be asymptotically normally 

distributed with mean   and covariance matrix 
1
( )I 

−
where ( )l  is the Fisher information 

matrix that can be estimated by the observed information matrix ˆ( )I  . Hence, the 100(1-α)% 

confidence interval for   is given as follows 

 

1

(1 )
2

ˆ ˆ( )j jjz i −

−


 (12) 

2.3.2. Bootstrap-p confidence interval 

Given a data set 1 2( , ,..., )nx x x x= and let ̂  be the MLE of  . To begin with, B bootstrap 

samples, 
bx  for 1, 2,...,b B=  will be generated. Then, we obtain the bootstrap version of 

MLE, 
*ˆ
B

  for each of the bootstrap samples. The 100(1-α) % confidence interval for   is 

given by 
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ul

 
   

  

 
 
 

 (13) 

 

where ( ) x 1-
2

l B = and  x 
2

u B =  . 

The B-p method is a simple method that generates confidence intervals directly from the 

percentiles of the bootstrap distribution of estimated parameters (Arasan & Adam 2014). 

2.3.3. Bootstrap-t confidence interval 

This method involves more work than the B-p interval as it requires the standard error of an 

estimate. Suppose we have B bootstrap samples 
* *

1 ,..., Bx x , and ̂  is the MLE of   . For each 

bootstrap sample, the bootstrap version of its MLE, 
*ˆ
b

   is computed.  Following that, we 

compute 
*

bz for each bootstrap samples.  

 
*

*
ˆ ˆ

ˆ
b

b

b

Z
 



−
=  (14) 

 

where ˆ
b  is the standard error for bth bootstrap sample. 

Then, we sort 
*

bZ  in the form of ascending order to obtain  
*

K
Z  where K=1,2,...,B. The 

100(1-α)% confidence interval for   can be obtained by 
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  ( )   ( ) * *ˆ ˆ ˆ ˆ,
l u

Z se Z se   − −  (15)  

 

where ( ) x 1-
2

l B =  and  x 
2

u B =  .  

3. Results 

3.1  Simulation study 

A simulation study was conducted to assess the performance of bathtub hazard model 

described in previous section. The simulation was done using 1000 replications with various 

sample sizes 50,100,250n = . The covariate values were simulated from the standard normal 

distribution. We mimicked survival data by setting the parameters 0 1, ,    to 3.3, 0.9, and 

0.4 respectively. In order to generate lifetimes 
it , a sequence of random numbers, 

iu  were 

drawn from uniform distribution. Furthermore, the censoring time denoted as ic  was drawn 

from exponential distribution with parameter   in which the value of   would be set and 

adjusted to produce the desired approximate cp. The survival time is classified as censored 

when i it c  while i it c  indicates uncensored. The survival time, it was obtained by 
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( )0 1
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i x
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= −  (16) 

 

To evaluate the performance of the estimators at various sample sizes and censoring 

proportions, bias, SE and root RMSE were obtained by 

 
ˆ( ) ,bias E  = −  (17) 

 

( )( )
2

ˆ ˆ ,SE E E = −  (18) 

 

( )2 2
RMSE SE bias= +  (19) 

 

Table 1 presents the results of the estimated bias, SE and RMSE based on the simulated 

data. It is clear from Table 1 that the value of bias, SE and RMSE increases as the CP and 

sample size increase. This demonstrates that higher sample sizes and smaller censoring 

proportions resulted in better estimates. These bias, SE ad RMSE values from the simulation 

study are small enough to show that the simulated data are generated by a stable simulation 

process. Likewise, as seen in Figure 1 and Figure 3, the values of SE and RMSE for each 

estimate decrease as the sample size increase. The SE and RMSE values, on the other hand, 

are shown to increase as the censoring proportion increases (see Figure 2 and Figure 4). 
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Table 1:  Bias, SE, and RMSE of the estimates for bathtub hazard model with covariate 

 ̂   
0

̂   
1

̂   

 

 

 

Bias 

CP n=50 n=100 n=250 n=50 n=100 n=250 n=50 n=100 n=250 

0 0.00706 0.00411 0.00133 0.07889 0.05278 0.01321 0.04488 0.02244 0.00750 

10 0.00701 0.00416 0.00147 0.07716 0.05333 0.01430 0.04620 0.02382 0.00947 

20 0.00751 0.00416 0.00181 0.08046 0.05406 0.01815 0.05072 0.02721 0.01130 

30 0.00773 0.00431 0.00190 0.08194 0.05527 0.01830 0.05206 0.02900 0.01216 

40 0.00981 0.00491 0.00220 0.09911 0.05981 0.02194 0.05883 0.03350 0.01463 

50 0.01121 0.00512 0.00305 0.11585 0.06275 0.02872 0.07012 0.03524 0.01792 

 

 

 

SE 

0 0.02350 0.01562 0.00996 0.34866 0.22819 0.14521 0.19834 0.12862 0.08212 

10 0.02462 0.01637 0.01063 0.35562 0.23396 0.15009 0.20766 0.13393 0.08693 

20 0.02605 0.01755 0.01126 0.36310 0.24244 0.15428 0.21765 0.13936 0.09051 

30 0.02733 0.01855 0.01154 0.37202 0.24842 0.15575 0.22573 0.14186 0.09270 

40 0.03249 0.02011 0.01306 0.40683 0.25839 0.16319 0.24369 0.15065 0.09924 

50 0.03948 0.02243 0.01596 0.44718 0.27184 0.17649 0.27053 0.16362 0.11075 

 

 

 

RMSE 

0 0.02454 0.01615 0.01005 0.35747 0.23421 0.14581 0.20335 0.13056 0.08246 

10 0.02560 0.01689 0.01073 0.36390 0.23996 0.15077 0.21273 0.13603 0.08745 

20 0.02711 0.01804 0.01140 0.37191 0.24839 0.15534 0.22348 0.14199 0.09122 

30 0.02840 0.01904 0.01170 0.38904 0.25449 0.15682 0.23165 0.14480 0.09350 

40 0.03394 0.02070 0.01324 0.41873 0.26522 0.16466 0.25069 0.15433 0.10031 

50 0.04104 0.02301 0.01625 0.46194 0.27899 0.17882 0.27947 0.16737 0.11219 

 

(a) 

 

(b) 

Figure 1: Line plot of SE at various sample sizes for (a) cp=0 and (b) cp=30 
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(c) (d) 

Figure 2: Line plot of SE at different censoring proportions for (c) n=50 and (d) n=250 

Figure 3: Line plot of RMSE at various sample sizes for (e) CP=0 and (f) CP=30 

 

Figure 4: Line plot of RMSE at different censoring proportions for (g) n=50 and (h) n=250 

(e) (f) 

 

 

(g) 

 

(h) 
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3.2  Real data analysis 

For illustration purpose, we analyze a real data set to show the application of the bathtub 

hazard model. The real data set represents the survival time (in days) of a random sample of 

227 advanced lung cancer patient where the event of interest is time to death with patients 

censored if the event did not occur. There were 137 male and 90 female patients, with 

censoring indicators of 0 and 1 indicating that the patient was censored and dead respectively 

(27.8% of the patients was right censored).  Previously, the range of simulation study 

included a sample size of 250 and censoring proportion of 30% to ensure the reliability of 

estimates obtained in this real data analysis. A non-parametric Kaplan-Meier survival curve 

and ( )S t based on the bathtub hazard model were plotted on the same graph. As depicted in 

the Figure 5, it can be said that the bathtub hazard model is appropriate for the advanced lung 

cancer data. 

 

  

Figure 5: Survival Curve 

 
Table 2 summarizes the descriptive statistics for uncensored observation where the mean 

value is greater than the median value, indicating that the survival time distribution for 

advanced lung cancer patients is positively skewed. This can also be seen from the histogram 

in Figure 6, which shows that the distribution is skewed to the right, which is in accordance 

with the conclusion drawn based on the mean and median values.  

Table 2: Descriptive statistics of survival time(uncensored observation) 

Mean 284.29 

Median 227.5 

Standard deviation 202.74 

Standard error 15.83 

Skewness 0.86 

Kurtosis -0.01 
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Figure 6: Histogram of survival time 
 

Bathtub hazard model without covariate was then generated and the maximum likelihood 

estimates with the corresponding standard error given in parentheses for the parameters of the 

model are summarized in Table 3.  

Table 3: Summary of maximum likelihood estimates without covariates 

Parameter Estimates (Standard Error) 

  0.0048(0.0011) 

  0.2751(0.0066) 

 

Further, bathtub hazard model with covariate was obtained since the present study 

interested in incorporating covariates. Descriptive statistics of survival time for uncensored 

observation according to gender was obtained as given in Table 4. It is clear from the table 

that female patients have a longer mean survival time than male patients, implying that 

females with advanced lung cancer can survive longer than males. 

Table 4: Descriptive statistics of survival time by gender 

 
In a similar manner, as shown in Figure 8, males exhibited higher hazard rates compared with 

females.   

 

 

 

 

 

 

 

Gender n Mean Standard error Standard deviation Median 

Male 111 264.3 18.8 198.1 210 

Female 53 326.1 28.6 207.9 293 
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Figure 7: Survival Curve (gender) 

 

 
Figure 8: Hazard plot (gender) 

 

The summary of maximum likelihood estimates for the parameters in bathtub hazard model 

with covariates is shown in Table 5. 

Table 5: Summary of maximum likelihood estimates with covariates 

 

 

 

 

 

 

 

Table 6 presents the confidence interval estimates for each of the parameter in the model 

which were computed using three estimation methods.  

 

 

Parameters Estimate (Standard error) t value Pr(>t) 

0
  4.6466(0.3194) 14.55 0.000 

1
  0.5027(0.1665) 3.02 0.0025 

  0.2755(0.0066) 41.88 0.000 
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Table 6: 95% confidence interval of 
0

 ,
1

  and   

Parameters Wald B-p B-t 

0
  (4.0207,5.2726) (4.1150,5.2623) (4.1150,5.2623) 

1
  (0.1764, 0.8291) (0.1553,0.8566) (0.1625,0.8529) 

  (0.2626,0.2883) (0.2632, 0.2903) (0.2604, 0.2873) 

 

The effect of covariate (gender) on survival time for advanced lung cancer patients can be 

determined based on the confidence interval estimates. It is noteworthy that the all the interval 

estimates for parameter 
1  do not include 0 indicating that gender has a significant effect on 

the survival time of advanced lung cancer patients. The significance of the covariate can also 

be concluded based on the p-value. Here, we test the null hypothesis 0 1: 0H  =  against the 

alternative hypothesis 
1 1: 0H   . Referring to Table 5, the p-value for 

1 is less than alpha 

value of 0.05 which lead to the decision of rejecting the null hypothesis, implying that gender 

does give a significant impact on the survival time.  The findings are in line with those of 

Siddiqui et al. (2010), who found that gender is the most important factor in influencing 

survival time among nonoperative non-small cell lung cancer patients .  In addition, Elkbuli et 

al. (2020) indicated that women had better survival for lung cancer after controlling for other 

covariates compared to men which is in line with this study as seen in Figure 8.  

4. Conclusion 

This study extended a two-parameter bathtub hazard model by incorporating covariates in the 

presence of right-censored data. The estimation of the parameters is approached by the MLE 

method. Also, this study set out to assess the performance of parameter estimates based on 

their bias, SE and RMSE at various censoring proportions and sample sizes. For this purpose, 

a simulation study was executed. The results of the simulation study, which are presented in a 

summary table and illustrated in line plots, show that as the censoring proportion increases, 

the SE and RMSE values increase. Furthermore, the results revealed that that the larger the 

sample size, the lower the SE and RMSE. The SE and RMSE values increase as the censoring 

proportion increase and sample size decrease, demonstrating that smaller censoring 

proportions and larger sample sizes yield better estimates. For the real data analysis, the 

bathtub hazard distribution provides a good fit to real data sets of advanced lung cancer. 

Based on the preceding discussion of the results, it was also concluded that the gender has a 

significant effect on survival time of advanced lung cancer patient. 

In this study, three confidence interval estimation methods were obtained. Thus, other 

confidence interval estimation methods such as likelihood ratio, jackknife or other bootstrap 

methods could be constructed in future study and the performance of the estimation methods 

could be assessed using a coverage probability study. This study only focused on extending 

the model in the presence of right-censored data. Therefore, future study could consider 

estimating the parameters in the context of interval-censored data. Moreover, the proposed 

model could be extended to include more covariates as well as time-varying covariates.  Also, 

an application to a real data set from different fields other than medical might be examined to 

further investigate the flexibility of bathtub hazard model. 
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