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ABSTRACT  

In most statistical analyses, the data variance used is assumed to be homogeneous, but not all 

cases follow the assumption. Therefore, the homogeneity of variance assumption testing 

should be carried out prior to performing the main analysis. There are various statistical tests 

of variance homogeneity that exist and to obtain the best statistical test in the testing of 

variance equality, this study makes a comparison of statistical tests against assumptions met, 

assumptions violated and the existence of outlier. The comparison is based on the Type 1 

Error rate and the power of the statistical test. For normal distribution, the comparison is 

between parametric statistical tests such as the Fisher test, the Bartlett test, the Levene test, the 

Brown-Forsythe test, and the Cochran C test. While for chi-squared distribution and outlier 

data, the comparison is between parametric and nonparametric statistical tests. The 

nonparametric statistical tests used are the Mood test, the Ansari-Bradley test, and the Fligner-

Killeen test. The data used is the result of a normal and Chi-squared Monte Carlo simulation.  

The results showed that almost all the parametric statistical tests can control Type 1 Errors 

well in almost all situations. For the Chi-squared distribution only the Brown-Forsythe 

parametric statistical test was found to be robust. But most of the robust tests on non-normal 

data are nonparametric statistical tests. While for normal data with heterogeneous variance, the 

power of the test of all parametric statistical tests is seen to increase and exceed 0.80 as the 

size effect increases. On non-normal distributions, the power of the test is smaller than normal, 

but the value will increase as the size effect increases. The case was different for the Fisher 

test, the Bartlett test, and the Cochran C test, which was tested against data with 10% outlier in 

one group. The power of the test for the 1:2 variance ratio is seen as large, but the value is 

decreasing as the size effect increases.  Thus, it can be concluded that none of the statistical 

tests were found to be robust and suitable for use in all the conditions set. 

Keywords: Monte Carlo simulation; nonparametric test; outlier; parametric test; robust test  

 

ABSTRAK  

Dalam kebanyakan analisis statistik, varians bagi data yang digunakan adalah bersifat 

homogen. Tetapi bukan semua kes yang andaian kehomogenan varians dicapai. Oleh sebab 

itu, pengujian andaian kehomogenan varians perlu dilakukan sebelum analisis utama 

dijalankan. Terdapat pelbagai ujian statistik kehomogenan varians yang wujud dan untuk 

mendapatkan ujian statistik yang terbaik dalam pengujian kesamaan varians, kajian ini 

membuat perbandingan ujian-ujian statistik terhadap andaian dipenuhi, andaian tidak dipenuhi 

dan kewujudan data terpencil. Perbandingan yang dilakukan adalah berdasarkan kadar Ralat 

Jenis 1 dan kuasa ujian statistik. Bagi taburan normal, perbandingan adalah antara ujian-ujian 

statistik berparameter seperti ujian Fisher, ujian Bartlett, ujian Levene, Ujian Brown-Forsythe 

dan ujian Cochran C. Manakala bagi taburan khi-kuasa dua dan data terpencil, perbandingan 

yang dibuat adalah antara ujian statistik berparameter dan tak berparameter. Ujian statistik tak 

berparameter yang digunakan adalah ujian Mood, ujian Ansari-Bradley dan ujian Fligner-

Killeen. Manakala data yang digunakan adalah hasil simulasi Monte Carlo yang tertabur 

secara normal dan Khi-kuasa dua. Hasil kajian mendapati hampir kesemua ujian statistik 
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berparameter dapat mengawal Ralat Jenis 1 dengan baik pada hampir kesemua keadaan. Bagi 

taburan Khi-kuasa dua hanya ujian statistik berparameter Brown-Forsythe yang didapati 

teguh. Tetapi kebanyakan ujian yang teguh pada keadaan data bukan normal adalah ujian 

statistik tak berparameter. Manakala bagi data normal dengan varians heterogen, kuasa ujian 

bagi kesemua ujian statistik berparameter dilihat meningkat dan melebihi 0.80 apabila kesan 

saiz semakin meningkat. Pada taburan bukan normal, kuasa ujian adalah lebih kecil 

berbanding normal tetapi nilai tersebut akan meningkat seiring dengan peningkatan kesan saiz. 

Kes ini berlainan pula bagi ujian Fisher, ujian Bartlett dan ujian Cochran C yang diuji 

terhadap data dengan kewujudan 10% nilai terpencil pada satu kumpulan. Kuasa ujian tersebut 

bagi nisbah varians 1:2 dilihat besar tetapi nilai tersebut semakin menurun apabila kesan saiz 

semakin meningkat. Maka, boleh disimpulkan bahawa tiada satu ujian statistik pun yang 

didapati teguh dan sesuai digunakan pada kesemua keadaan yang ditetapkan.  

Kata kunci: simulasi Monte Carlo; ujian tak berparameter; terpencil; ujian berparameter; ujian 

teguh 

1. Introduction  

There are various types of parametric tests in hypothesis testing. Typically, the parametric 

hypothesis testing tests the mean, variance, and proportion parameters for cases of one 

population, two populations, or more than two populations. This study focuses on comparing 

homogeneity of variance hypothesis testing on two populations. Homogeneity of variance 

means the variance for each population is equal. Currently, there are various parametric and 

nonparametric statistical tests to test the homogeneity of variance. The comparison of the 

homogeneity of variance hypotheses testing is carried out based on the assumptions met, 

assumptions violated, and the presence of outliers. The assumptions tested in this study are 

normality, equality of variance, and sample size.  

According to Johann Karl Gauss, most statistical methods for parametric tests, such as 

correlation, regression, t-test, and ANOVA, assume that the data used are based on a normal 

distribution, also known as a Gaussian distribution. A normal distribution is a bell-shaped 

distribution in which the high frequency is at the center of the graph shape while the low 

frequency is at the end of the graph (Gravetter & Wallnau 2000). According to Chambers et 

al. (1983), researchers can find out more information concerning the studies conducted by 

knowing and understanding the types of distribution used in their studies. When these 

assumptions of normality are skewed, the results and conclusions made based on a study can 

be inaccurate or not true. 

Brown and Forsythe (1974) indicated that a robust measure of central tendency in 

statistical tests to test the homogeneity of variance hypothesis should be considered. Another 

study that considering the outlier and the violation of the assumption in the test were 

examined by Ercheg-Hurn and Mirosevich (2008). They examined an ANOVA and least 

square test with various range of modern robust and rank-based significance tests by using 

software such as SAS, SPSS and R and concluded the test of assumption by discussing with 

the robust effect size indices. On the other hand, Underwood (1997) indicated that ANOVA 

would be problematic if the variance between groups is heterogeneous. Thus, Legendre and 

Borcard (2000) compared Type 1 Error rate and power of a test for statistical tests of 

homogeneity of variance testing the assumption of ANOVA homogeneity of variance. The 

statistical tests compared in the study were the Bartlett, Box’s M, Scheffe Box log-anova, and 

Cochran’s C tests. Vorapongsathorn et al. (2004) carried out a comparative study of Type 1 

Error rate and power of a test for Bartlett, Levene, and Cochran tests when the assumptions of 

data normality are not met. The study aimed to find out the most appropriate statistical test 
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among the three tests for a given situation to test the equality of variance. Lee et al. (2010) 

and Mendes et al. (2006) conducted a study on the homogeneity of variance test using the 

Monte Carlo simulation. According to Oladejo and Adetunde (2009), and Mazahreh et al. 

(2009), to test the homogeneity of variance of a data prior to performing the t-test and 

ANOVA test, the Levene test (Gastwirth et al. 2009; Carroll and Schneider 1985; Tomarken 

and Serlin 1986) is often used in the SPSS software. Subsequently, the question concerning 

the Levene test is the best test to test the homogeneity of variance in the SPSS software was 

raised. Thus, Lee et al. (2010) compared the Levene test with six other tests of homogeneity 

of variance to determine the best homogeneity of variance test for a given data. Other tests of 

homogeneity of variance being compared were the Fmax test (Hartley 1950), Samiuddin cube 

root test (Samiuddin and Atiqullah 1976), Z-variance test, Z-variance modified test (Overall 

and Woodward 1976), O’Brien test (O’Brien 1978; 1981), and Levene modified test (Carroll 

and Scnheider 1985). The comparison in the study was based on the test robustness by 

obtaining the Type 1 Error rate and power of a test through the Monte Carlo simulation (Alabi 

et al. 2008; Rana et al. 2008; Agunbiade and Iyuniwura 2010) of 3000. Their study used four 

groups with a balanced design consisting of sample sizes of n=10 and n=30. The comparison 

was carried out on the normal distribution, chi-square distribution with 5 degrees of freedom, 

chi-square distribution with 6 degrees of freedom, leptokurtic distribution, and platykurtic 

distribution.  

Lemeshko et al. (2010a), Lemeshko et al. (2010b), Lemeshko et al. (2010) and Gobunova 

& Lemeshko (2012) were studied on the statistical test to test the homogeneity of variance 

and Lemeshko et al. (2010) indicated that the best statistical test to test the homogeneity of 

variance when the assumption of normality is not met is the Cochran’s C test. Their study 

aimed to obtain the best homogeneity of variance test for data not meeting the normality 

criteria. Thus, they compared the classical and nonparametric tests on the De, Laplace, and 

normal distributions for the groups, k=2, k=3, k=4, and k=5, by obtaining the power of 

statistical tests. The classical tests selected in their study were the Fisher, Bartlett, Cochran’s 

C, Hartley, and Levene tests. Meanwhile, the Ansari-Bradley, Mood, and Siegel-Tukey tests 

were selected for the nonparametric tests. Upon testing and comparing, they found the Mood 

nonparametric test had the highest power of a test compared to other nonparametric tests. 

Nevertheless, when the classical tests were compared with the nonparametric test, the 

Cochran’s C test still had the highest power of a test compared to others. Thus, it shows that 

Cochran’s C test is the best test for distributions skewed from the normality. 

The study by Nordstokke and Zumbo (2010) concerned the homogeneity of variance 

hypothesis testing using the Levene modified parametric and nonparametric statistical tests. 

The Levene modified parametric statistical test used the propensity of median measure of 

central tendency. This statistical test is also called the Brown-Forsythe test. In contrast, the 

Levene nonparametric test was based on the principle of rank transformation (Conover and 

Iman 1981). Various existing parametric and nonparametric tests for homogeneity of 

variances, and some variations of these tests were examined in Conover et al. (1981). These 

tests were conducted to do comparisons under the null hypothesis (for robustness) and under 

the alternative (for power) with Monte Carlo simulations of various symmetric and 

asymmetric distributions, for various sample sizes.  

Ahad et al. (2011) conducted a comparative study of data normality testing using the 

Monte Carlo simulation based on four types of statistical test: Kolmogorov-Smirnov test 

(Smirnov 1935, Kolmogorov 1956), Anderson-Darling test (Anderson & Darling 1952), 

Cramer-von Mises test (Anderson 1962), and Shapiro-Wilk test (Shapiro & Wilk 1965). The 

study was carried out to determine the sample size that could detect non-normal data using 
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non-normally distributed data. The comparison was based on the Type 2 Error rate. They 

found that the Shapiro-Wilk test could detect the non-normality for non-normal data on a 

small sample size compared to other normality tests. It was followed by the Anderson-

Darling, Cramer-von Mises, and Kolmogorov-Smirnov tests. They concluded that the 

Shapiro-Wilk test was the most appropriate test to test the assumption of data normality. 

Sharma and Kibria (2013) have reviewed 25 test procedures that are widely reported in the 

literature for testing the hypothesis of homogeneity of variances under various experimental 

conditions but not considering the condition of outlier existence in the data. Conover et al. 

(2018) and Kim and Cribbie (2018) were updated on a comparative study of tests for 

homogeneity of variance with included the lognormal distribution and various conditions 

while Wang et al. (2017) and Yi et al. (2022) were compared of robust tests for homogeneity 

of variance in Factorial ANOVA. Patil and Kulkarni (2022) were proposed an uniformly 

superior exact multi-sample test procedure for homogeneity of variances under location-scale 

family of distributions. 

In a study, not all cases meet the assumption of the equality of variance; there is also a 

possibility of cases not meeting the assumption. Thus, the equality of variance data testing 

should be carried out first not to skew the study’s results. This study compares the statistical 

tests of homogeneity of variance on two samples for cases in which the assumptions are met, 

assumptions violated, and the presence of outliers to determine the study’s best equality of 

variance test. The comparison is carried out to get the best statistical test to test a case and 

obtain solid results for a study. 

Therefore, a comparison of the homogeneity of variance parametric test on the normally 

distributed data is carried out to test the equality of variance. It is followed by a comparison of 

parametric and nonparametric tests on the equality of variance for non-normal data and 

outliers and a determination of the best statistical test to overcome the assumptions of 

normality, equality of variance, and the presence of outlier skewness problem. 

2. Monte Carlo Simulation  

The analysis was carried out using the generated simulation data. The data used in this 

statistical test comparative study were the results of the R software simulation, based on two 

groups. Whereas the distributions used were the normal and chi-square distributions. The 

normality test was carried out on the simulated data to identify whether the simulated data is 

normal or non-normal.  Then, the hypothesis testing on several statistical tests of the equality 

of variance was carried out using the simulated data. Each test carried out was evaluated 

based on the Type 1 Error rate and power of a test to determine the best statistical test. 

The hypothesis testing in this study was carried out following the assumptions of 

normality, assumptions of equality of variance, and diversified sample sizes. Then, the test 

was carried out on non-normal data, i.e., chi-square distributed data with 3 degrees of 

freedom. The study’s homogeneity of variance test was compared in two groups with sample 

sizes of 10=n , 30=n  and 50=n . The variance values for each group were determined 

based on ratios of 1:1, 1:2, 1:3, and 1:4. When coupled with heterogeneous variance, the 

inequality of the sample size in each group can affect Type 1 Error. Thus, this study also 

analyzed variance pairs and sample sizes, termed positive and negative pairs. 

The positive pair here means that when the sample size is large, the variance is also large, 

and likewise, when the sample size is small, the variance is also small. On the other hand, the 

negative pair refers to a large sample size coupled with a small variance and a small sample 

size with a large variance. 
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For the study’s Monte Carlo simulation for the statistical tests of homogeneity of variance, 

the steps for the simulation were shown to avoid confusion in carrying out the simulation. The 

Type 1 Error rate and power of a test calculation algorithms for the homogeneity of variance 

hypothesis testing are as follows: 

 

Algorithm for the Type 1 Error rate 

1. Generate a random sample from the Normal and Chi-square distributions. Assuming 

the null hypothesis, H0 is correct. 

2. Calculate the statistical test value. 

3. Calculate the p-value. 

4. Repeat step (1) to step (3) 10,000 times. 

5. Count B = number (p-value < alpha) 

6. Calculate the Type 1 Error = step (5) / 10,000 

 

Algorithm for the power of a test 

1.  Generate a random sample from the normal and chi-square distributions. Assuming the 

null hypothesis, H0 is correct. 

2. Calculate the statistical test value. 

3. Calculate the p-value. 

4. Repeat step (1) to step (3) 10,000 times. 

5. Count B = number (p-value < alpha) 

6.  Calculate the power of a test = step (5) / 10,000 

2.1.  Method of testing data normality  

Data normality means the data is normally distributed and is around the mean. A normal 

distribution is a bell-shaped distribution with the highest frequency in the middle and the low 

frequency at the end. A normal distribution is also a continuous and symmetrical distribution 

with an area under the curve is equal to one. 

The data should be normally distributed or close to normal for most statistical analyses 

because normality is important in the parametric statistical method. Thus, prior to carrying out 

the hypothesis testing on comparing the statistical tests of homogeneity of variance, the 

simulated data should be tested by data normality testing. The normality test is important to 

ensure that the assumption of normality is not skewed (Cochran & Cox 1957; Levene 1960; 

Conover et al. 1981; Weerahandi 1995; Zar 1999) so that the study’s findings meet the 

hypotheses and the Type 1 Error rate for the test carried out is close to the significance level 

specified. 

Several statistical tests are used in data normality testing (Ghasemi & Zahediasl 2012)   

and are readily available in the R computer software. Among them are the Kolmogorov- 

Smirnov test (Kolmogorov 1956; Smirnov 1935), Anderson-Darling test (Anderson & 

Darling 1952), Cramer-von Mises test (Anderson 1962), and Shapiro-Wilk test (Shapiro & 

Wilk 1965). The null hypothesis for these tests is that the data are normally distributed. When 

the p-value is greater than the specified significance level 0.05 =  , the null hypothesis is 

not rejected, meaning that the data is normally distributed. Similarly, the null hypothesis is 

rejected if the p-value is smaller than the significance level 0.05 = , meaning the tested data 

is non-normally distributed. 

One of the most important factors influencing the results of such data normality tests is the 

sample size. These tests are evaluated on various spectrums of non-normal data and different 
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sample sizes. In this study, the Shapiro-Wilk test was selected to test the assumption of data 

normality because the test is the best normality test compared to other tests (Ahad et al. 

2011). This test rejects the null hypothesis of the normality test on the smallest sample size 

for all levels of skewness and kurtosis for each distribution. The statistical test for Shapiro-

Wilk is as follows: 
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is a vector of the expected value for a statistical standard normal distribution,  V n n=   is a 

covariance matrix, and ( )'
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, ,...,

n
X X X X=  is a random sample. 

2.2.  Outliers 

Outliers are data or observations that are far from other observations. The presence of outliers 

in the data can negatively impact the analysis results and provide skewed results. In addition, 

outliers can cause the assumption of data normality to be skewed and lower the value of the 

power of a test, in turn, causing the probability of making the right decision to decrease. Thus, 

prior to carrying out data analysis, a preliminary review of the data should be done to identify 

outliers and subsequently use the appropriate method on the analysis to obtain robust analysis 

results. 

In this study the simulated normal distribution data were contaminated with 10% outliers  

by replacing 10% of the data with extreme or outlier values in one of the groups and both 

groups to see the Type 1 Error rates and power of a test. Then, this study selected several 

methods to identify outliers and ensure that the data used contain outliers. The methods used 

were the boxplot method and the comparison of data values with outliers determination 

intervals. The outliers in this study are refer to the data outside the interval (quantile-1-3 * 

IQR + quantile-3), with the IQR being the interquartile interval for the entire data. 

3. Methodology 

A comparative study of statistical tests of homogeneity of variance was carried out to obtain 

the best statistical test to test data. Thus, to realize the objective, this comparison was carried 

out based on the assumption is met, the assumption is violated, and the presence of outliers. 

This comparison was carried out by testing the hypotheses on the simulated data using 

statistical tests of the homogeneity of selected variance. The null and alternative hypotheses, 

H0 and H1, should be established first prior to testing the hypotheses on the statistical tests of 

homogeneity of variance. For this study, H0 and H1 are: 
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H0 for testing this hypothesis is rejected if the statistical test value is greater than the 

critical value of the significance level specified at  =  0.05 when the p-value is smaller than 

the specified   value. 

Next, several parametric and nonparametric tests of homogeneity of variance were selected 

to compare the statistical tests of homogeneity of variance in this study. The Fisher, Bartlett, 

Cochran’s C, Levene, and Brown-Forsythe tests were the selected parametric tests. 

Meanwhile, the selected nonparametric tests were the Ansari-Bradley, Mood, and Fligner-

Killeen modified tests. The comparison between parametric tests was carried out to see the 

best test for normally distributed data with the assumption that the equality of variance is met, 

violated, and diversified sample sizes. The study continued to compare parametric and 

nonparametric statistical tests on data not meeting the assumption of normality and data with 

outliers. The comparison was carried out by obtaining the Type 1 Error rate and the power of 

a statistical test. 

The Fisher test was employed to test the equality of variance hypothesis for two groups 

with sample sizes of n1 and n2. The statistical test for the Fisher test is: 
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2  statistical value is greater than the 

critical value 
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statistical value is smaller than the critical value 
2  with its degree of freedom is k-1, then H0 

fails to be rejected. The statistical test for the Bartlett test is: 
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where, N is the total sample size, 
j

N  is the sample size for the j group, k is the total group, 

and 
2

j
S  is the variance for the j group. When H0 is true, all 3

i
v   and the sample are normally 

distributed, the Bartlett statistical test is independent of the sample size, and the test is close to 
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the distribution 
2

1k − . However, if the sample used does not consist of a normal distribution, 

the Bartlett statistical test is dependent on the sample size, and its distribution is not a 

distribution 
2

1k − . 

The Cochran’s C test was introduced by Cochran (1941) whereby this test is the ratio of 

the highest variance group and the total variance sample. The statistical test for the Cochran 

test is: 
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where, n is the number of observations in each group for a balanced design and kF  is the 

critical value of F at k  with n-1,(k-1)(n-1) degrees of freedom. If the statistical value is 

greater than the critical value, then H0 is rejected. 

The Levene test uses a mean sample in the calculation and is an alternative to the Bartlett 

test introduced by Klotz and Johnson (1993). This test tests the assumption of variance 

normality for the independent t-test sample and ANOVA design. According to Levene 

(Gastwirth et al. 2009), the Levene test uses an absolute value of residuals or a square value 

of residuals transforming the variance test to a mean test because of its relatively robust 

nature on the assumption of normality compared to the variance test. The statistical test for 

the Levene test is: 
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is the statistical test for the Levene modified test. Then, H0 is rejected if 

( , 1, )W F k N k − − , ( , 1, )F k N k − −  is the critical value of the F distribution with 

degrees of freedom of k-1 and N-k, and the significance level 0.05 = .  

The Brown-Forsythe test is a Levene test using a median sample in the calculation, and it 

is a modified Levene test to overcome the problem of inequality of variance. The statistical 

test for the Brown-Forsythe test is: 
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where N is the total sample size, ni is the sample size for the i group, | |,
ij ij i i

Z Y Y Y= −  is the 

mean of the i subgroup, 
i

Z  is the median of the group 
ij

Z , and Z  is the overall median of 

ij
Z . In addition, when 

'

.
| |

ij ij i
Z Y Y= −  where 

'

i
Y  is the trimmed 10% mean for the i-th 

subgroup, and W is the statistical test for the Levene modified test. Then, H0 is rejected if 

( , 1, )W F k N k − − , ( , 1, )F k N k − −  is the critical value of the F distribution with 

degrees of freedom of k-1 and N-k, and the significance level 0.05 = .  

The Ansary-Bradley test is a nonparametric statistical test to test the equality of variance. 

The statistical test for the Ansary-Bradley test is: 
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where m, n are the sample size ( ),m n  and 
i

R  is the position of the i-th value in the sample.  

In addition, the Mood test is also a nonparametric statistical test to test the equality of 

variance. The statistical test for the Mood test is: 
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where m, n are the sample size ( ),m n and iR  is the position of the i-th value in the sample.  

The Fligner-Killeen test is a nonparametric statistical test to test the equality of variance. 

This test is used on independent data and non-normally distributed data. The Fligner Killeen 

test was proposed by Fligner and Killeen (1976). Fligner and Killeen used a combination of 

absolute value ranks 
ij

X  and set the increasing scores, such as  
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based on the ranks. However, Conover and Johnson et al. (1981) later modified the Fligner-

Killeen test and proposed that this test uses ranking 
ij j

X X−  where 
j

X  is the median 

sample for the j-th population. Thus, this Fligner-Killeen modified test is called the Fligner-

Killeen test of median central tendency. Once the score ,N ia is set to 
ij jX X− , the statistical 

test for the Fligner-Killeen modified test is: 
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where, 
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For large sample sizes, the Fligner-Killeen statistical test, 
2  asymptotically distributed in a 

chi-square distribution with degrees of freedom of k-1. This Fligner-Killeen modified test is 

more robust on data that the assumption of normality is skewed than the original Fligner-

Killeen test.  

3.1.  Type 1 Error and power of a test 

The tests were compared using the Type 1 Error value and power of a test obtained using the 

R software. Statistical tests with a Type 1 Error rate close to the nominal value   and within 

Bradley’s liberal criteria interval proposed by Bradley (1978) are robust tests. Meanwhile, for 

the power of a test, the higher the probability of detecting the inequality of variance correctly, 

the greater the probability of the power of a test. 

3.1.1. Type 1 Error 

Type 1 Error is the probability of rejecting a null hypothesis, whereas it is true and easy to 

calculate in the hypothesis testing. Once the Type 1 Error rate was obtained, this study 

selected Bradley’s liberal criteria as the Type 1 Error rate interval. Based on these criteria, 

testing is robust when the empirical rate for Type 1 Error, , is in the range ˆ0.5 1.5 .     

In this study, the significance level   was set at 0.05; a test is robust if   is in the interval of 

0.025 and 0.075. However, according to Bradley (1978), a test that can control the Type 1 

Error rate very well has the Type 1 Error rate within the stringent robust interval criteria, 

between 0.045 and 0.055. In addition, the power of the statistical test, 1 −  was also obtained 

to compare the statistical tests in this study. 

3.1.2. Power of a test 

Power calculations are as important as significance calculations and power analysis should be 

regularly incorporated into experiments to find few dissenters. Therefore, to illustrate the 

importance of power analysis and the consequences of ignoring power, Thomas and Juanes 

(1996) had used an example from Animal Behaviour to determine whether the experiment had 

a good chance of producing a statistically significant result if a biologically significant 

difference existed in the population. In other words, whether the experiment had high power, 

given a biologically significant effect size. 
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The power of a statistical test is the probability of rejecting H0 when H0 is false. It means 

the power of a test is the probability of making the right decision. In addition, the power of a 

test power can also detect the effect size, i.e., 
2 2

1 2
   if such an effect is present. The effect 

size means the difference between the actual value and the value expressed in H0. Thus, with 

the Type 1 Error rate and the power of a statistical test probability, the determination of the 

best statistical test of homogeneity of variance for a given data testing can be achieved.  

4. Results and Discussion  

The values of Type 1 Error rate and power of a test were obtained from the hypothesis testing 

carried out using selected tests of homogeneity of variance for the assumption that is met, the 

assumption that is violated, and the presence of outliers at the significance level, α = 0.05. For 

a normal distribution, the comparison of homogeneity of variance carried out was only 

between parametric statistical tests, namely the Fisher, Bartlett, Levene, Brown-Forsythe, and 

Cochran’s C tests. Meanwhile, for Chi-square distribution and outliers, the statistical tests 

compared were between parametric and nonparametric.  It is because the assumption of 

nonparametric statistical tests is that data are not normally distributed. 

4.1.  Type 1 Error 

The robustness of the testing method was assessed through its ability to control the Type 1 

Error rate well. Type 1 Error is the probability value to reject the null hypothesis, H0, whereas 

it is true. The Type 1 Error rate was obtained when the variance for both groups are equal. A 

test was assumed to be robust in this study if the Type 1 Error was within Bradley’s liberal 

criteria. At the significance level, α = 0.05, Bradley proposed two robust criteria, i.e. the Type 

1 Error rate is within the interval of 0.025 and 0.075 and the more stringent criteria, i.e. the 

interval of 0.045 and 0.055. Table 1 shows the complete results for the Type 1 Error rates 

obtained through the homogeneity of variance hypothesis testing using the Fisher, Bartlett, 

Cochran’s C, Levene, Brown-Forsythe, Ansari-Bradley, Mood, and Fligner-Killeen modified 

tests. Type 1 Error rates within Bradley’s liberal robust criteria interval are marked *, while 

Type 1 Error rates within the stringent criteria interval are marked **. 

4.2.  Normal distribution 

The Fisher and the Bartlett tests showed a good level of control of Type 1 Error rates over the 

Normal distribution. Both tests’ Type 1 Error rates were within a stringent robust criteria 

interval for all sample size conditions. Meanwhile, the Levene test showed good control of 

Type 1 Error rates on balanced designs for sample sizes of 30 and 50, respectively, and in 

groups with different sample sizes. However, the Levene test remained robust with the liberal 

criteria for a sample size of 10. In addition, the Brown-Forsythe test was able to control Type 

1 Error rates well for large sample sizes, i.e. n=30 and n=50, but the test was still robust with 

the criteria liberal for a sample size group of 10 and different sample sizes. Next, the 

Cochran’s C test showed good control of Type 1 Error rates only for the balanced design but 

not the imbalanced design. 
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4.3.  Chi-square distribution, 
2  

The Brown-Forsythe test showed good control of Type 1 Error rates for the balanced group 

on the chi-square distribution. However, for the imbalanced group, the test remained robust 

with liberal criteria. This statistical test was seen to be robust compared to other parametric 

statistical tests on the chi-square distribution probably because this test used a more robust 

measure of central tendency, i.e. median compared to mean. In addition, the Mood test was 

able to control Type 1 Error rates very well for all sample size conditions. As for the Ansari-

Bradley test, only for a balanced group with a sample size of 10, the test was robust with 

liberal criteria. In other cases, the test was found to enter the interval of stringent robust 

Table 1: Type 1 Error Rates for hypothesis testing based on homogeneity of variance tests. 

Sample 

Size 

Variance 

pairing 

Test Normal Chi-Square Outlier -1 

group  

Outlier - 2 

groups 

10,10 1:1 

Fisher 0.0526 ** 0.1796 0.9999 0 
Bartlett 0.0526 ** 0.1796 0.9999 0 

Levene 0.0617 0.1282 0.0038 0 

B.Forsythe 0.0382 0.0509 0 0 

Cochran 0.0526 ** 0.1796 0.9999 0 

Mood 
N 

NA 

0.0496 ** 0.0496 ** 0.0168 

A.Bradley 0.0393 * 0.0393 * 0.0194 

Fligner 0.0603 * 0.0378 * 0.0064 

30,30 1:1 

Fisher 0.0535 ** 0.2137 1 0 

Bartlett 0.0534 ** 0.2137 1 0 

Levene 0.0546 ** 0.1141 0.9988 0 

B.Forsythe 0.0442 * 0.0463 0.1388 0 

Cochran 0.0535 ** 0.2137 1 0 

Mood 

NA 

0.0486 ** 0.0961 0.0171 

A.Bradley 0.0493 ** 0.0832 0.0248 

Fligner 0.0703 * 0.1170 0.0043 

50,50 1:1 

Fisher 0.0498 ** 0.2334 1 0 

Bartlett 0.0498 ** 0.2334 1 0 

Levene 0.0520 ** 0.1172 1 0 

B.Forsythe 0.0457 ** 0.0491 ** 0.9084 0 

Cochran 0.0498 ** 0.2334 1 0 

Mood 
 

NA 

0.0523 ** 0.1422 0.0191 

A.Bradley 0.0520 ** 0.1089 0.0275 * 

Fligner 0.0750 * 0.2145 0.0058 

10,50 1:1 

Fisher 0.0476 ** 0.1886 1 0 

Bartlett 0.0480 ** 0.1901 1 0 

Levene 0.0475 ** 0.1116 1 0 

B.Forsythe 0.0410 * 0.0433 * 0.5706 0 

Cochran 0.1659 0.3644 1 0 

Mood 

NA 

0.0507 ** 0.0789 0.0177 

A.Bradley 0.0514 ** 0.0607 * 0.023 

Fligner 0.0685 * 0.0627 * 0.0039 

50,10 1:1 

Fisher 0.0480 ** 0.1791 1 0 

Bartlett 0.0491 ** 0.1838 1 0 

Levene 0.0513 ** 0.1039 0.00112 0 

B.Forsythe 0.0417 * 0.0408 * 0 0 

Cochran 0.1638 0.3555 1 0 

Mood 

NA 

0.0498 ** 0.0503 ** 0.0162 

A.Bradley 0.0505 ** 0.0575 ** 0.0250 * 

Fligner 0.0662 * 0.0726 * 0.0042 
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criteria. Next, the Fligner-Killeen test was robust when Type 1 Error rates were within 

Bradley liberal criteria interval for all sample size conditions. 

4.4.  Outliers in one group 

When normal data were contaminated with the presence of 10% outliers in one group, the 

Mood test was found to be able to control the Type 1 Error rate well for a balanced group 

with the small sample size, n=10, and for an imbalanced group with 10% outliers value in a 

large sample size. In addition, the Ansari-Bradley test also showed good control of Type 1 

Error at different sample sizes with its outliers were within the group with a larger sample 

size. However, the test was still robust with liberal criteria of the same sample size, n=10, and 

the sample size differed with the outliers were within the group with the smaller sample size. 

Next, the Fligner-Killeen test was robust with liberal criteria for the balanced group with the 

small sample size, n=10 and the imbalanced group. 

4.5.  Outliers in two groups 

For contaminated data with 10% outliers in both groups, only the Ansari-Bradley statistical 

test was found robust for the balanced group with large sample size, n=50, and different 

sample sizes with outliers were within the group with a larger sample size. 

4.6.  Power of a test 

The power of a statistical test is the probability of rejecting H0 when H0 is false. It means the 

power of a statistical test, 1 −  is the probability of making the right decision. In this study, 

the power of a test was obtained when the variance for both groups is heterogeneous, and the 

values of power of a test are equal to or more than 80%, indicating the test of homogeneity of 

variance is good and appropriate for use. Tables 2, 3, and 4 show the complete results for the 

power of statistical tests obtained through the homogeneity of variance hypothesis testing 

using the Fisher, Bartlett, Cochran’s C, Levene, Brown-Forsythe, Ansari-Bradley, Mood, and 

Fligner-Killeen modified tests. 

For normal distribution data with a variance ratio of 1:2, the values of power of a test for 

all equality of variance parametric statistical test were more than 0.80 when the sample sizes 

are the same, n=30 and n=50. In addition, only the Cochran’s C test had a high power of a test 

compared to other parametric tests on the normal distribution for positive and negative 

variance pairs. Whereas, for a variance ratio of 1:3, only the power of a test for the Fisher, 

Bartlett, and Cochran’s C tests had a rate of more than 0.80 for the balanced group with a 

sample size of 10. While for equally large sample sizes and positive and negative variance 

pairs, all parametric statistical tests showed a high power of a test. 

For a variance ratio of 1:4, all parametric statistical tests showed the power of statistical 

tests exceeding 0.80 for all sample size conditions. It indicates that all the tests can detect 

differences in variance in both samples when the effect size is large. Thus, it can be concluded 

that the effect size can affect the power of a test. 

For Chi-square distribution with a variance ratio of 1:2, all equality of variance tests 

showed a small or less than 0.80 power of statistical tests for all sample size conditions. 

Whereas, for data with a variance ratio of 1:3 and the same sample size n=50, all parametric 

statistical tests and the nonparametric Fligner-Killeen statistical test had a power of a test 

exceeding 0.80. However, for the positive variance pair, only the Mood and Ansari-Bradley 

tests showed a high power of a test, exceeding 0.80. 
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Next, for a variance ratio of 1:4 with the same sample sizes n=30 and n=50, all parametric 

tests of equality of variance and the Fligner-Killeen test showed the power of a test exceeding 

0.80. On the positive and negative variance pairs, only the power of a test for the Cochran’s 

C, Mood, and Ansari- Bradley tests were found greater than 0.80. 

Table 2: Power of statistical tests for hypothesis testing based on homogeneity of variance test with a variance ratio 

of 1:2. 

Sample Size Test Normal Chi-

Square 

Outlier -1 group  Outlier – 2 

groups 

 

 

 

10,10 

Fisher 0.4962 0.2655 0.6684 0 

Bartlett 0.4960 0.2655 0.6681 0 

Levene 0.4196 0.2148 0 0 

B.Forsythe 0.3092 0.1214 0 0 

Cochran 0.4962 0.2655 0.6684 0 

Mood 

NA 

0.0164 0.0653 0.1292 

A.Bradley 0.0158 0.0874 0.1335 

Fligner 0.1348 0.0239 0.0621 

 

 

 

30,30 

Fisher 0.9531 0.4932 0.9987 0.0002 

Bartlett 0.9531 0.4932 0.9987 0.0002 

Levene 0.9139 0.4219 0.0495 0 

B.Forsythe 0.8966 0.3401 0 0 

Cochran 0.9531 0.4932 0.9987 0.0002 

Mood 

NA 

0.0197 0.3666 0.5879 

A.Bradley 0.0266 0.4013 0.5763 

Fligner 0.3870 0.1332 0.4398 

 

 

 

50,50 

Fisher 0.9974 0.6398 1 0.0019 

Bartlett 0.9974 0.6398 1 0.0019 

Levene 0.9916 0.5930 0.31 0 

B.Forsythe 0.9903 0.5368 0.0002 0.0001 

Cochran 0.9974 0.6398 1 0.0019 

Mood 

NA 

0.0242 0.6368 0.8581 

A.Bradley 0.0339 0.6601 0.8354 

Fligner 0.6108 0.2915 0.7825 

 

 

 

10,50 

Fisher 0.6572 0.3263 0.9961 0 

Bartlett 0.7068 0.3593 0.9929 0 

Levene 0.5937 0.2446 0.0939 0 

B.Forsythe 0.5738 0.1736 0.0008 0 

Cochran 0.9279 0.5880 0.9997 0.0007 

Mood 

NA 

0.3409 0.057 0.1776 

A.Bradley 0.2794 0.1781 0.2917 

Fligner 0.2466 0.0157 0.1326 

 

 

 

50,10 

Fisher 0.7966 0.3389 0.7299 0.0034 

Bartlett 0.7685 0.3119 0.7834 0.0014 

Levene 0.7349 0.2930 0.0001 0 

B.Forsythe 0.6819 0.2113 0 0 

Cochran 0.8531 0.4387 0.9675 0.0218 

Mood 

NA 

0.1469 0.2775 0.3960 

A.Bradley 0.1250 0.2555 0.3529 

Fligner 0.2016 0.0666 0.1774 
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Table 3: Power of statistical tests for hypothesis testing based on homogeneity of variance test with a variance ratio 

of 1:3.  

Sample Size Test Normal Chi-Square Outlier -1 group  Outlier – 2 groups 

 

 

 

10,10 

Fisher 0.8746 0.4232 0.1428 0.0012 

Bartlett 0.8744 0.4230 0.1425 0.0012 

Levene 0.7594 0.3567 0 0.0003 

B.Forsythe 0.6361 0.2360 0 0.0001 

Cochran 0.8746 0.4232 0.1428 0.0012 

Mood 

NA 

0.0016 0.2012 0.3132 

A.Bradley 0.0020 0.2442 0.3136 

Fligner 0.2453 0.0982 0.1801 

 

 

 

30,30 

Fisher 0.9999 0.7679 0.4223 0.0359 

Bartlett 0.9999 0.7679 0.4223 0.0359 

Levene 0.9988 0.7350 0 0.0243 

B.Forsythe 0.9985 0.6891 0.0005 0.0536 

Cochran 0.9999 0.7679 0.4223 0.0359 

Mood 

NA 

0.0011 0.8556 0.9196 

A.Bradley 0.0034 0.8551 0.9110 

Fligner 0.7215 0.6188 0.8876 

 

 

 

50,50 

Fisher 1 0.9078 0.6807 0.1212 

Bartlett 1 0.9078 0.6807 0.1212 

Levene 1 0.9028 0.0001 0.1502 

B.Forsythe 1 0.8929 0.0008 0.3441 

Cochran 1 0.9078 0.6807 0.1212 

Mood 

NA 

0.0014 0.9882 0.9951 

A.Bradley 0.0050 0.9844 0.9931 

Fligner 0.9203 0.9192 0.9959 

 

 

 

10,50 

Fisher 0.9866 0.5356 0.3009 0 

Bartlett 0.991 0.5711 0.2295 0 

Levene 0.9510 0.4573 0 0 

B.Forsythe 0.9449 0.3912 0 0.0011 

Cochran 0.9997 0.7771 0.4889 0.0223 

Mood 

NA 

0.9024 0.3045 0.5403 

A.Bradley 0.8416 0.5618 0.6701 

Fligner 0.4792 0.1222 0.4762 

 

 

 

50,10 

Fisher 0.9811 0.5880 0.1597 0.0795 

Bartlett 0.9773 0.5535 0.1938 0.0528 

Levene 0.9665 0.5410 0.0001 0.0176 

B.Forsythe 0.9517 0.4483 0.0001 0.0142 

Cochran 0.9870 0.6652 0.4813 0.166 

Mood 

NA 

0.7757 0.6336 0.7199 

A.Bradley 0.7328 0.5853 0.6679 

Fligner 0.4017 0.2866 0.4791 

 

For data with 10% outliers in one group with a variance ratio of 1:2, the power of a test for 

the Fisher and Bartlett tests exceeded 0.80 for a balanced design consisting of sample sizes of 

30 and 50 and for the positive variance pair. At the same time, the Cochran C parametric 

statistical test showed a high power of a test exceeding 80% for a balanced design with n=30 

and positive and negative variance pairs. Whereas, for data with a variance ratio of 1:3 and a 

balanced group with large sample sizes of n=30 and n=50, only the Mood and Ansari-Bradley 
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nonparametric statistical tests showed the power of a test exceeding 0.80. However, for a 

balanced group with a sample size of 50, the Fligner-Killeen test also had a large power of a 

test exceeding 0.80. 

Table 4: Power of statistical tests for hypothesis testing based on homogeneity of variance test with a variance ratio 

of 1:4. 

Sample Size Test Normal Chi-Square Outlier -1 group  Outlier – 2 groups 

 

 

 

10,10 

Fisher 0.9738 0.5446 0.0255 0.0143 

Bartlett 0.9738 0.5444 0.0253 0.0142 

Levene 0.8951 0.4577 0.0036 0.0163 

B.Forsythe 0.8124 0.3303 0.0041 0.0142 

Cochran 0.9738 0.5446 0.0255 0.0143 

Mood 

NA 

0.0001 0.3279 0.4495 

A.Bradley 0.0001 0.3813 0.4474 

Fligner 0.3365 0.1869 0.3062 

 

 

 

30,30 

Fisher 1 0.9015 0.0195 0.2801 

Bartlett 1 0.9015 0.0194 0.2801 

Levene 1 0.8915 0.0307 0.3835 

B.Forsythe 1 0.8732 0.0899 0.5391 

Cochran 1 0.9015 0.0195 0.2801 

Mood 

NA 

0 0.9689 0.9776 

A.Bradley 0 0.9662 0.9761 

Fligner 0.8823 0.8893 0.9814 

 

 

 

50,50 

Fisher 1 0.9803 0.0194 0.6008 

Bartlett 1 0.9803 0.0194 0.6008 

Levene 1 0.9810 0.0910 0.8239 

B.Forsythe 1 0.9810 0.3112 0.9487 

Cochran 1 0.9803 0.0194 0.6008 

Mood 

NA 

0 0.9994 0.9993 

A.Bradley 0.0001 0.9994 0.9995 

Fligner 0.9850 0.9956 0.9999 

 

 

 

10,50 

Fisher 0.9999 0.6757 0.0035 0.0012 

Bartlett 1 0.7108 0.0013 0.0031 

Levene 0.9960 0.6115 0.0016 0.0200 

B.Forsythe 0.9948 0.5644 0.0217 0.0741 

Cochran 1 0.8788 0.0122 0.1989 

Mood 

NA 

0.9975 0.6007 0.7565 

A.Bradley 0.9913 0.8153 0.8389 

Fligner 0.6417 0.3408 0.7659 

 

 

 

50,10 

Fisher 0.9975 0.7495 0.0357 0.2660 

Bartlett 0.9969 0.7235 0.0407 0.2195 

Levene 0.9944 0.7089 0.0195 0.1758 

B.Forsythe 0.9928 0.6381 0.0197 0.1611 

Cochran 0.9983 0.8051 0.1482 0.3918 

Mood 

NA 

0.9916 0.8036 0.8494 

A.Bradley 0.9878 0.7656 0.8100 

Fligner 0.5780 0.4925 0.6748 

 

Furthermore, for data with a variance ratio of 1:4 and the balanced group with n=30 and 

n=50, all nonparametric statistical tests showed a high power of a test than parametric tests. 

However, only the power of a test for the Ansari-Bradley test for the positive variance pair 
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exceeded 80%. For the negative variance pair, only the Mood nonparametric test had the 

power of a test exceeding 0.80. 

For contaminated data with 10% outliers in both groups with a ratio of 1:2, the Mood and 

Ansari-Bradley tests showed the test of a power exceeding 0.80 for the same sample size 

n=50. For a variance ratio of 1:3, the power of a test for all nonparametric tests for the 

balanced group with sample sizes of 30 and 50 exceeded 0.80. 

For a variance ratio of 1:4 with the same sample sizes of n=30 and n=50, the 

nonparametric statistical tests showed the power of a test exceeding 80%. At the same time, 

the power of a test for the Levene and Brown-Forsythe parametric statistical tests exceeded 

0.80 with a sample size equal to n=50. For the positive variance pair, only the Ansari-Bradley 

test showed the power of a test exceeding 0.80. As for the negative variance pair, the Mood 

and Ansari-Bradley tests showed the power of a test exceeding 80% compared to other 

statistical tests. 

5. Conclusion 

The comparison can determine the best homogeneity of variance test results for a given case 

carried out on normally and chi-square distributed data and data contaminated with outliers. 

The equality of variance parametric statistical tests used in this study were the Fisher, Bartlett, 

Levene, Brown-Forsythe, and Cochran’s C tests. While nonparametric tests used were the 

Mood, Ansari-Bradley, and Fligner-Killeen tests. For normal data, the comparison of tests 

carried out was between the parametric statistical tests themselves. While for Chi-square 

distributed data and data with outlier values, the comparison carried out was between 

parametric and nonparametric statistical tests. The comparison was carried out based on the 

Type 1 Error rates and the power of statistical tests. A test is robust and can control the Type 

1 Error rate well when the Type 1 Error rate for the test is close to the nominal significance 

level of 0.05. Whereas for different variance values, a test is categorized as good and 

appropriate for use when the value of the power of a test exceeds the probability value of 0.80 

(Peterman 1990; Cohen 1988). 

A test is robust when the Type 1 Error is close to the significance level of 0.05. For 

normally distributed data with the same variance values, all parametric statistical tests of 

homogeneity of variance except the Cochran’s C test are said to be robust for all sample size 

conditions. In comparison, the Cochran’s C test is only robust for a balanced design 

condition. For chi-square distributed data and for all sample size conditions, all nonparametric 

statistical tests and the Brown-Forsythe parametric statistical test are said to be robust. It 

indicates that nonparametric statistical tests are more appropriate to test the homogeneity of 

variance for the Chi-square distributed data of two groups. Next, to test the equality of 

variance for contaminated data with 10% outliers values in one of the groups, the only robust 

and appropriate tests for all balanced group conditions n= 10, and in the imbalanced group are 

the Ansari-Bradley and Fligner-Killeen tests.  In comparison, the Mood test is only found to 

be robust for the balanced group n=10. When the data used are contaminated in both groups, 

the Ansari-Bradley test is robust for the balanced group condition n=50 and the imbalanced 

group. It indicates that none of the tests is robust for all distribution conditions and sample 

sizes.   

Moreover, for normal data for two groups with a variance ratio of 1:2 and the imbalanced 

group, the Cochran’s C test is more appropriate for use than other parametric statistical tests. 

Whereas for large balanced sample sizes of n=30 and n=50, all power of a test for parametric 

statistical tests exceeds 80% but not for the balanced sample size of n=10. For the balanced 

sample size of n=10, with a variance ratio of 1:3, the power of a test for the Levene and 
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Brown-Forsythe tests are still found to be less than 0.80. Based on the study’ results, it can be 

concluded that when normal data for two groups have different variance values in both 

groups, the power of a test for all parametric statistical tests is found to increase and exceed 

0.80 to the extent some reaching a value of 1 when the variance for one group increases.  

For Chi-square distribution, the power of a test for all homogeneity of variance tests is 

small for small effect sizes. As the variance ratio increases in one of the groups, the power of 

a test also increases. The power of parametric statistical tests exceeds 0.80 for the balanced 

sample size condition when the sample size and effect size are large. It is also similar to the 

Fligner-Killeen nonparametric statistical test. The Cochran’s C test also detects the 

heterogeneity of variance for positive and negative variance pairs as the effect size increases. 

Meanwhile, the Mood and Ansari-Bradley are found to have the power of a test exceeding 

80% for the positive variance pair with a variance ratio of 1:3 and positive and negative 

variance pairs with a variance ratio of 1:4.  

For data with 10% outlier values in one of the groups for a variance ratio of 1:2, the power 

of a test for the Fisher and Bartlett tests exceeds 0.80 if the group is balanced with the large 

sample size and for the positive variance pair but the power of a test for those tests decreases 

as the effect size increases. Similar to the power of a test for the Cochran’s C test, its value 

decreases as the effect size increases. For a variance ratio of 1:2, the power of a test for the 

Cochran’s C test exceeds 80% for the balanced group with the large sample size and the 

positive and negative variance pairs. In another case with nonparametric statistical tests, the 

power of tests increases consistent with the effect size. For the variance ratios of 1:3 and 1:4, 

the power of nonparametric statistical tests exceeds 0.80 for the balanced group with large 

sample size. As for the positive and negative variance pairs and a variance ratio of 1:4, the 

power of a test for the Ansari-Bradley test is found to exceed 80% and higher than other 

statistical tests.  

When the data are contaminated with 10% outlier values in both groups, the power of a 

test for all statistical tests consistently increases with the effect size. For a variance ratio of 

1:2, the Mood and Ansari-Bradley tests have a power of a test exceeding 0.80 for the balanced 

group with n=50. However, when the variance for one of the groups increases, the power of a 

test for all nonparametric statistical tests exceeds 80% for the balanced group with large 

sample size. The power of a test for the Mood and Ansari-Bradley tests is also high, to some 

extent exceeding 0.80 for positive and negative variance pairs with a variance ratio of 1:4. In 

addition, for a balanced group with n=50 and a variance ratio of 1:4, the power of a test for 

the Levene and Brown-Forsythe parametric statistical tests exceeds 80%, apart from the 

nonparametric statistical tests.  

In conclusion, none of the statistical tests is robust and appropriate for use for all 

conditions. Thus, to obtain the best homogeneity of variance test for a study, the conditions 

that need to be considered are data distribution, sample size, variance ratio, and the presence 

of outliers. Thus, with the comparison of homogeneity of variance hypothesis testing between 

parametric tests on normal data and the comparison between parametric and nonparametric 

tests on chi-square distribution data and outliers carried out, the determination of the best 

statistical test for all cases assumed in this study can be carried out. Thus, all three study’s 

objectives have been carried out and answered. 
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