Sains Malaysiana 41(9)(2012): 1117–1124

 

 

Cleaning Potential of Surfactin on Fouled Ultrafiltration (UF) Membranes

(Potensi Pembersihan Surfaktin untuk Membersihkan Jerapan pada Membran Ultrapenurasan(UF))

 

 

Mohd Hafez Mohd Isa*

Faculty of Science and Technology, Universiti Sains Islam Malaysia (USIM), Bandar Baru Nilai

71800 Nilai, Negeri Sembilan, Malaysia

 

Richard A. Frazier & Paula Jauregi

Department of Food and Nutritional Sciences, University of Reading, Whiteknights

PO Box 226 Reading RG6 6AP, United Kingdom

 

Received: 27 February 2012 / Accepted: 21 May 2012

 

ABSTRACT

Biosurfactants are microbially produced surface active agents that offer better biodegradability and lower toxicity than chemically synthesized surfactants because of their biogenetic origin. One of the most surface-active biosurfactants known is surfactin, a cyclic lipopeptide produced by various strains of Bacillus subtilis. In this study, the cleaning potential of surfactin on ultrafiltration (UF) membranes fouled with BSA was studied using centrifugal UF devices of 50 kDa and 100 kDa MWCO polyethersulfone (PES) membranes. Mechanisms of bovine serum albumin (BSA) displacement by surfactin on fouled UF membranes were studied using dynamic light scattering (DLS) technique and surface tension measurements. Hydrodynamic diameter and surface tension measurements of BSA-surfactin mixtures showed that the surfactin was efficient in displacing BSA fouled on UF membranes due to strong electrostatic repulsive interactions involved at pH8.5. This study demonstrated that surfactin can be used to effectively clean fouled UF membranes.

 

Keywords: Critical Micelle Concentration (CMC); hydrodynamic diameter; surface tension measurements; surfactin; ultrafiltration (UF)

 

ABSTRAK

Biosurfaktan merupakan agen aktif permukaan yang mempunyai keupayaan biodegradasi yang lebih baik dan sifat toksik yang lebih rendah berbanding surfaktan sintesis kimia disebabkan oleh ciri biogenetik asalannya. Salah satu biosurfaktan yang paling aktif permukaan diketahui ialah surfaktin, sejenis lipopeptida berbentuk siklik yang dihasilkan oleh pelbagai strain Bacillus subtilis. Di dalam kajian ini, keupayaan pembersihan surfaktin terhadap membran ultrapenurasan (UF) yang dijerap dengan albumin serum lembu (BSA) telah dikaji dengan menggunakan alat pengempar UF bermembran polietersulfon (PES) 50 kDa dan 100 kDa MWCO. Mekanisme pembersihan membran yang dijerap dengan albumin serum lembu (BSA) oleh surfaktin telah dikaji dengan menggunakan teknik selerakan cahaya dinamik (DLS) dan pengukuran tegangan permukaan. Pengukuran diameter hidrodinamik dan tegangan permukaan ke atas sebatian kompleks BSA-surfaktin menunjukkan surfaktin berkesan di dalam pembersihan membran UF yang dicemari BSA berdasarkan interaksi tangkisan elektrostatik yang kuat pada pH8.5. Kajian ini menunjukkan bahawa surfaktin boleh digunakan secara efektif untuk membersihkan jerapan pada membran UF.

 

Kata kunci: Diameter hidrodinamik; kepekatan kritikal misel (CMC); pengukuran tegangan permukaan; surfaktin; ultrapenurasan (UF)

 

 

REFERENCES

 

Adel, A., Nadia M., Othman, O. & Abdelhafidh G. 2008. Study of thermally and chemically unfolded conformations of bovine serum albumin by means of dynamic light scattering. Mater. Sci. Eng. C 28: 594-600.

Al-Amoudi, A., Williams, P., Al-Hobaib A.S. & Lovitt, R.W. 2008. Cleaning results of new and fouled nanofiltration membrane characterized by contact angle, updated DSPM, flux and salts rejection. Appl. Surf. Sci. 254: 3983-3992.

Chen, V., Li, H., Li, D., Tan, S. & Petrus H.B. 2006. Cleaning strategies for membrane fouled with protein mixtures. Desalination 200: 198-200.

Fuda, E., Jauregi, P. & Pyle, D.L. 2004. Recovery of lactoferrin and lactoperoxidase from sweet whey using Colloidal Gas Aphrons (CGAs) generated from an anionic surfactant (AOT). Biotechnol. Prog. 20: 514-525.

Gunning, P.A., Mackie, A.R., Gunning, A.P, Wilde, P.J., Woodward, N.C. & Morris V.J. 2004. The effect of surfactant type on protein displacement from the air-water interface. Food Hydrocolloids 18: 509-515.

Heerklotz, H. & Seelig, J. 2001. Detergent- like action of the antibiotic peptide surfactin on lipid membranes, Biophyl. J. 81: 1547-1554.

Isa, M.H.M., Coraglia, D.E., Frazier, R.A. & Jauregi, P. 2007. Recovery and purification of surfactin from fermentation broth by a two-step ultrafiltration process. J. Membr. Sci. 296: 51-57.

Ishigami, Y., Osman, M., Nakahara, H., Sano, Y., Ishiguro, R. & Matsumo M. 1995. Significance of β-sheet formation for micellization and surface adsorption of surfactin, Colloids Surf. B: Biointerfaces 4: 341-348.

Kazemimoghadam M. & Mohammadi T. 2007. Chemical cleaning of ultrafiltration membranes in the milk industry.Desalination 204: 213-218.

Kelley D. & McClements D.J. 2003. Interactions of bovine serum albumin with ionic surfactants in aqueous solution.Food Hydrocolloids 17: 73-85.

Kwaambwa, H.M. & Maikokera, R. 2007. Air-water interface interaction of anionic, cationic, and non-ionic surfactants with a coagulant protein extracted from Moringaoleifera seeds studied using surface tension probe. Water SA 33: 583-588.

Lang, S. & Wagner, F. 1993. Chapter 9: Biological activities of Biosurfactants. Biosurfactants: Production, Properties and Applications. N. Kosaric (ed.) New York: Marcel Dekker Inc.

Mackie, A. & Wilde, P. 2005. The role of interactions in defining the structure of mixed protein-surfactant interfaces. Adv. Colloid Interface Sci. 117: 3-13.

Magdassi, S., Vinetsky, Y. & Relkin, P. 1995. Formation and structural heat-stability of β-lactoglobulin/surfactant complexes. Colloids Surf. B: Biointerfaces 6: 335-362.

Maget-Dana, R. & Ptak, M. 1992. Interfacial properties of surfactin. J. Colloid Interface Sci. 153: 285-291.

Malhotra, A. & Coupland, J.N. 2003. The effect of surfactants on the solubility, zeta potential, and viscosity of soy protein isolates. Food Hydrocolloids 18: 101-108.

Muthusamy, K., Gopalakrishnan, S., Ravi, T.K. & Sivachidambaram, P. 2008, Biosurfactants: Properties, commercial production and application. Curr. Sci. 94: 736-747.

Nigam, M.O., Bansal, B. & Chen, X.D. 2008. Fouling and cleaning of whey protein concentrate fouled ultrafiltration membranes. Desalination 218: 313-322.

Nitschke, M. & Costa, S.G.V.A.O. 2007. Biosurfactants in food industry. Trends in Food Science and Technology 18: 252-259.

Salgin, S., Takaç, S. & Özdamar, T.H. 2006. Adsorption of bovine serum albumin on polyether sulfone ultrafiltration membranes: Determination of interfacial interaction energy and effective diffusion coefficient. J. Membr. Sci. 278: 251-260.

Santos, S.F., Zanette, D., Fischer, H. & Itri, R. 2003. A systematic study of bovine serum albumin (BSA) and sodium dodecyl sulfate (SDS) interactions by surface tension and small angle X-ray scattering. J. Colloid Interface Sci. 262: 400-408.

Seydlová, G. & Svobodová, J. 2008. Review of surfactin chemical properties and the potential biomedical applications. Cent. Eur. J. Med. 123-133.

Smith, P.K., Krohn, R., Hermanston, G., Mallia, A., Gartner, F., Provenzano, M., Fujimoto, E., Goeke, B., Olson, B. & Klenk, D. 1985. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150: 76-85.

Wei, X., Chang, Z. & Liu, H. 2003. Influence of sodium dodecyl sulfate on the characteristics of bovine serum albumin solutions and foams. J. Surfact. Deterg. 6: 107-112.

 

 

* Corresponding author; email: m.hafez@usim.edu.my

 

previous