Sains Malaysiana 45(11)(2016): 1675–1678

 

Biocompatibility of  TiO2 Nanorods and Nanoparticles on HeLa Cells

(Biokeserasian TiO2 Nanorod dan Nanopartikel ke atas Sel HeLa)

 

NOOR SAKINAH KHALID1*, FATIN IZYANI MOHD FAZLI1, NOOR KAMALIA ABD HAMED2, MUHAMMAD LUQMAN MOHD NAPI2, SOON CHIN FHONG3 & MOHD KHAIRUL AHMAD2

 

1Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia

86400 Parit Raja, Batu Pahat, Johor Darul Takzim, Malaysia

 

2Solar Device Research Laboratory, MiNT-SRC, UTHM, Universiti Tun Hussein Onn Malaysia

86400 Parit Raja, Batu Pahat, Johor Darul Takzim, Malaysia

 

3Biosensor and Bioengineering Labratory, MiNT-SRC, UTHM, Universiti Tun Hussein Onn Malaysia

86400 Parit Raja, Batu Pahat, Johor Darul Takzim, Malaysia

 

Received: 20 April 2015/Accepted: 12 October 2015

 

ABSTRACT

Titanium dioxide (TiO2) nanorods and nanoparticles had been successfully done by hydrothermal method and spray pyrolysis deposition technique, respectively. Form XRD results, crystallite structure for TiO2 nanorods is rutile phase at 2θ degree 27.5° which corresponded to [110] orientation. Whereas, TiO2 nanoparticles produced anatase phase at 2θ degree 25.3° which corresponded to [110] plane. The structure of nanorods and nanoparticles were characterized using FESEM. The size of nanorods was in the range of 80 to 100 nm. While, the nanoparticles size was ranging from 25 to 35 nm. The HeLa cells were grown on those TiO2 and were observed under fluorescence microscope. The cells showed healthy sign of growth on TiO2 nanorods and nanoparticles substrates. Thus, TiO2 nanorods and nanoparticles are biocompatible to HeLa cells.

 

Keywords: Biocompatibility; nanoparticles; nanorods; TiO2

 

ABSTRACT

Titanium dioksida (TiO2) berbentuk nanorod dan nanopartikel telah berjaya dihasilkan melalui kaedah hidroterma dan teknik semburan pirolisis. Analisis daripada XRD menunjukkan komposisi untuk TiO2 nanorod adalah fasa rutil pada darjah dengan bacaan 27.5° yang sepadan dengan jujukan [110]. Manakala nanopartikel TiO2 adalah fasa anatas pada darjah dengan bacaan 25.3° yang sepadan dengan jujukan [101]. Bentuk nano-silinder dan nano-partikel telah dianalisis menggunakan FESEM. Saiz nanorod adalah antara 80 dan 100 nm diameter. Selain itu, saiz nano-partikel adalah 25 hingga 35 nm diameter. Kemudian, sel HeLa telah dibiakkan di atas sampel TiO2 tersebut. Setelah itu, sel HeLa diperhatikan di bawah mikroskop pendarfluor. Keputusan menunjukkan pertumbuhan sel HeLa yang sihat pada TiO2 nano-silinder dan nano-partikel. Oleh itu, TiO2 nanorod dan nano-partikel menunjukkan keserasian biologi kepada sel HeLa.

 

Kata kunci: Keserasian biologi; nano-partikel; nano-silinder; TiO2

REFERENCES

Ahmad, M.K. & Murakami, K. 2012.  Low temperature and normal pressure growth of rutile-phased TiO2 nanorods/ nanoflowers for DSC application prepared by hydrothermal method. Journal of Advanced Research in Physics 3(2): 1-4.

Gao, M., Li, Y., Guo, M., Zhang, M. & Wang, X. 2012. Effect of substrate pretreatment on controllable growth of TiO2 nanorod arrays. Journal of Materials Science & Technology 28(7): 577-586.

He, Z., Cai, Q., Fang, H., Situ, G., Qiu, J., Song, S. & Chen, J. 2013. Photocatalytic activity of TiO2 containing anatase nanoparticles and rutile nanoflower structure consisting of nanorods. Journal of Environmental Sciences 25(12): 2460-2468.

Khalid, N.S., Wan Zaki, W.S. & Ahmad, M.K. 2015. Growth of rutile phased titanium dioxide (TiO2) nanoflowers for HeLa cells treatment. In 5th International Conference on Biomedical Engineering in Vietnam, IFMBE Proceedings 46, edited by Vo Van Toi and Tran Ha Lien Phuong. New York: Springer International Publishing. pp. 243-246.

Kommireddy, D.S., Patel, A.A., Shutave, T.G., Mills, D.K., Lvov, Y.M. 2005. Layer-by-layer assembly if TiO2 nanoparticles for stable hydrophilic biocompatible coatings. Journal of Nanoscience and Nanotechnology 5(7): 1081- 1087.

Patil, G.E., Kajale, D.D., Gaikwad, V.B. & Jain, G.H. 2012. Spray pyrolysis deposition of nanostructured tin oxide thin films. ISRN Nanotechnology 2012: Article ID 275872.

Ranga Rao, A. & Dutta, V. 2007. Low-temperature synthesis of TiO2 nanoparticles and preparation of TiO2 thin films by spray deposition. Solar Energy Materials & Solar Cells 91: 1057-1080.

Sapizah Rahim, Ainon Hamzah & Shahidan Radiman. 2012. Inactivation of Escherichia coli under fluorescent lamp using TiO2 nanoparticles synthesized via sol gel method.  Sains Malaysiana 41(2): 219-224.

Seo, J-W., Chung, H., Kim, M-Y., Lee, J., Choi, I.H. & Cheon, J. 2007. Development of water-soluble single-crystalline TiO2 nanoparticles for photocatalytic cancer-cell treatment. Small 3(5): 850-853.

Valencia, S., Marín, J.M. & Restrepo, G. 2009.  Study of the bandgap of synthesized titanium dioxide nanoparticules using the sol-gel method and a hydrothermal treatment. Open Materials Science Journal 4: 9-14.

Zielinski, S. 2010. Henrietta Lacks’ ‘Immortal’ Cells. Smithsonian Channel. http://www.smithsonianmag.com/science-nature/ Henrietta-Lacks-Immortal-Cells.html.

 

 

*Corresponding author; email: noorsakinahkhalid@gmail.com

 

 

 

 

previous