Sains Malaysiana 45(11)(2016): 1723–1731

 

Synthesis of Zeolite from Coal Fly Ash by Hydrothermal Method without Adding Alumina and Silica Sources: Effect of Aging Temperature and Time

(Sintesis Zeolit daripada Abu Cerobong Arang Batu melalui Kaedah Hidroterma Tanpa Menambah Sumber Alumina dan Silika: Kesan Penuaan Suhu dan Masa)

 

W. CHANSIRIWAT1,2, D. TANANGTEERAPONG1 & K. WANTALA1,2,3*

 

1Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand

 

2Chemical Kinetics and Applied Catalysis Laboratory (CKCL), Faculty of Engineering,

Khon Kaen University, Khon Kaen 40002, Thailand

 

3Research Center for Environmental and, Hazardous Substance Management (EHSM)

Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand

 

Received: 25 December 2015/Accepted: 4 April 2016

 

ABSTRACT

The aim of this research was to synthesize zeolite from coal fly ash by hydrothermal method. The effect of aging temperature and time on zeolite P1 synthesis (Na-P1) from Mae Moh coal fly ash (MFA) without adding any alumina and silica sources were examined during the synthesized process. The central composite design (CCD) was used for experimental design to obtain the optimal process parameters of the aging temperature (105-195ºC) and time (12-84 h) where the specific surface area was used as a response. The chemical and physical properties of Na-P1 such as specific surface area, crystalline phase, compositions and morphology were examined. The response results showed that the specific surface area of Na-P1 decreased with an increase of both aging temperature and time, whereas the XRD intensity of Na-P1 increased with an increase of both aging temperature and time. The composition of SiO2/Al2O3 in mass ratio of coal fly ash was observed, which was suitable to Na-P1 synthesis. The maximum specific surface area of zeolite products was found at the designed condition of aging temperature of 105ºC and time of 12 h. Thus, zeolite P1 can be prepared by hydrothermal method without adding any alumina and silica sources.

 

Keywords: Coal fly ash; Coal power plant; response surface methods; zeolite synthesis

 

ABSTRAK

Tujuan kajian ini adalah untuk mensintesis zeolit daripada abu cerobong arang batu melalui kaedah hidroterma. Kesan penuaan suhu dan masa pada zeolite sintesis P1 (Na-P1) daripada abu cerobong arang batu Mae Moh (MFA) tanpa menambah apa-apa sumber alumina dan silika dikaji semasa proses sintesis. Pusat reka bentuk komposit (CCD) telah digunakan untuk uji kaji reka bentuk bagi mendapatkan parameter proses optimum pada suhu penuaan (105-195ºC) dan masa (12-84 h) dengan kawasan permukaan tertentu digunakan sebagai tindak balas. Sifat kimia dan fizikal Na-P1 seperti kawasan permukaan yang khusus, fasa hablur, komposisi dan morfologi telah ditentukan. Hasil maklum balas menunjukkan bahawa kawasan permukaan tertentu Na-P1 menurun dengan peningkatan suhu penuaan dan masa, manakala keamatan XRD Na-P1 terus meningkat dengan peningkatan suhu penuaan dan masa. Komposisi oleh SiO2/Al2O3 dalam nisbah jisim abu cerobong arang batu diperhatikan, sesuai untuk sintesis Na-P1. Kawasan maksimum permukaan tertentu produk zeolit telah ditemui pada satu keadaan penuaan suhu 105ºC dan masa 12 h. Oleh itu, zeolit P1 boleh disediakan dengan menggunakan kaedah hidroterma tanpa menambah apa-apa sumber alumina dan silika.

 

Kata kunci: Abu cerobong arang batu; kaedah gerak balas permukaan; loji janakuasa arang batu; sintesis zeolite

REFERENCES

Adamczyk, Z. & Bialecka, B. 2005. Hydrothermal synthesis of zeolites from polish coal fly ash. Polish Journal of Environmental Studies 14(6): 713-719.

Belviso, C., Giannossa, L.C., Huertas, F.J., Lettino, A., Mangone, A. & Fiore, S. 2015. Synthesis of zeolites at low temperatures in fly ash-kaolinite mixtures. Microporous and Mesoporous Materials 212: 35-47.

Bukhari, S.S., Behin, J., Kazemian, H. & Rohani, S. 2015. Conversion of coal fly ash to zeolite utilizing microwave and ultrasound energies: A review. Fuel 140: 250-266.

Cama, J., Ayora, C., Querol, X. & Ganor, J. 2005. Dissolution kinetics of synthetic zeolite NaP1 and its implication to zeolite treatment of contaminated waters. Environmental Science & Technology 39(13): 4871-4877.

Cardoso, A.M., Horn, M.B., Ferret, L.S., Azevedo, C.M.N. & Pires, M. 2015. Integrated synthesis of zeolites 4A and Na-P1 using coal fly ash for application in the formulation of detergents and swine wastewater treatment. Journal of Hazardous Materials 287: 69-77.

Grela, A., Hebda, M., Łach, M. & Mikuła, J. 2016. Thermal behavior and physical characteristics of synthetic zeolite from CFB-coal fly ash. Microporous and Mesoporous Materials 220: 155-162.

Izidoro, J.C., Fungaro, D.A., Santos, F.S. & Wang, S. 2012. Characteristics of Brazilian coal fly ashes and their synthesized zeolites. Fuel Processing Technology 97: 38-44.

Kazemian, H., Naghdali, Z., Kashani, T.G. & Farhadi, F. 2010. Conversion of high silicon fly ash to Na-P1 zeolite: Alkaline fusion followed by hydrothermal crystallization. Advanced Powder Technology 21(3): 279-283.

Krasae, N. & Wantala, K. 2015. Enhanced nitrogen selectivity for nitrate reduction on Cu-nZVI by TiO2 photocatalysts under UV irradiation. Applied Surface Science 380: 309-317.

Ma, X., Zhang, Z. & Wang, A. 2016. The transition of fly ash-based geopolymer gels into ordered structures and the effect on the compressive strength. Construction and Building Materials 104: 25-33.

Moutsatsou, A., Stamatakis, E., Hatzitzotzia, K. & Protonotarios, V. 2006. The utilization of Ca-Rich and Ca–Si-Rich fly ashes in zeolites production. Fuel 85(5-6): 657-663.

Murayama, N., Yamamoto, H. & Shibata, J. 2002. Mechanism of zeolite synthesis from coal fly ash by alkali hydrothermal reaction. International Journal of Mineral Processing 64(1): 1-17.

Okoye, F.N., Durgaprasad, J. & Singh, N.B. 2015. Mechanical properties of alkali activated flyash/kaolin based geopolymer concrete. Construction and Building Materials 98: 685-691.

Onutai, S., Jiemsirilers, S., Thavorniti, P. & Kobayashi, T. 2015. Aluminium hydroxide waste based geopolymer composed of fly ash for sustainable cement materials. Construction and Building Materials 101: 298-308.

Phoo-Ngernkham, T., Sata, V., Hanjitsuwan, S., Ridtirud, C., Hatanaka, S. & Chindaprasirt, P. 2015. High calcium fly ash geopolymer mortar containing Portland cement for use as repair material. Construction and Building Materials 98: 482-488.

Pimraksa, K., Chindaprasirt, P. & Setthaya, N. 2010. Synthesis of zeolite phases from combustion by-products. Waste Management and Research 28(12): 1122-1132.

Rongsayamanont, C. & Sopajaree, K. 2007. Modification of synthetic zeolite pellets from lignite fly ash A: The pelletization. In World of Coal Ash (WOCA). pp. 1-9. Northern Kentucky, USA. http://www.flyash.info/2007/12rongsay.pdf.

Sang, S., Liu, Z., Tian, P., Liu, Z., Qu, L. & Zhang, Y. 2006. Synthesis of small crystals zeolite NaY. Materials Letters 60(9-10): 1131-1133.

Suwannaruang, T., Rivera, K.K.P., Neramittagapong, A. & Wantala, K. 2015. Effects of hydrothermal temperature and time on uncalcined TiO2 synthesis for reactive Red 120 photocatalytic degradation. Surface and Coatings Technology 271: 192-200.

Thuadaij, P. & Nuntiya, A. 2012. Effect of the SiO2/Al2O3 Ratio on the synthesis of Na-X zeolite from Mae Moh fly ash. ScienceAsia 38(3): 295-300.

Volli, V. & Purkait, M.K. 2015. Selective preparation of zeolite X and A from flyash and its use as catalyst for biodiesel production. Journal of Hazardous Materials 297: 101-111.

Wei, N., Wang, X. & Guan, W. 2015. Synthesis of pure zeolite from coal fly ash for ammonium removal. Chinese Journal of Environmental Engineering 9(2): 795-799.

Yodsa-nga, A., Millanar, J.M., Neramittagapong, A., Khemthong, P. & Wantala, K. 2015. Effect of manganese oxidative species in as-synthesized K-OMS 2 on the oxidation of benzene. Surface and Coatings Technology 271: 217-224.

Zhang, X., Tang, D., Zhang, M. & Yang, R. 2013a. Synthesis of NaX zeolite: Influence of crystallization time, temperature and batch molar ratio SiO2/Al2O3 on the particulate properties of zeolite crystals. Powder Technology 235: 322-328.

Zhang, Z., Li, J., Li, H., Wang, H., Zhu, J. & He, Q. 2013b. Dynamic formation of zeolite synthesized from fly ash by alkaline hydrothermal conversion. Waste Management and Research 31(11): 1160-1169.

 

 

*Corresponding author; email: kitirote@kku.ac.th

 

 

 

 

previous