Sains Malaysiana 46(10)(2017): 1701–1708


Arbuscular Mycorrhizal Fungal Composition Affects the Growth and Nutrient Acquisition of Two Plants from a Karst Area

(Kesan Komposisi Kulat Mikoriza Arbuskul terhadap Pertumbuhan dan Pemerolehan Nutrien oleh Dua Tumbuhan dari Kawasan Karst)




1College of Forestry/Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang 550025, China


2College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China


3Life Science College, Southwest University, Chongqing 400715, China


Received: 5 August 2016/Accepted: 23 February 2017




How the composition of the arbuscular mycorrhizal (AM) fungal community affects plant traits of different plant species in karst environments is poorly understood. Broussonetia papyrifera (a woody shrub) and Bidens pilosa (a herbaceous plant) growing in pots in limestone soil were inoculated with an AM fungus, either Funneliformis mosseae (FM), Diversispora versiformis (DV) or Glomus diaphanum (GD) or with an inoculum mixture of all three AM fungi (bn). B. papyrifera and B. pilosa seedlings inoculated with AM fungi showed a significant increase in biomass and nitrogen and phosphorus acquisition compared with the controls, which lacked mycorrhiza. Mixed fungal inoculations significantly enhanced biomass and nitrogen and phosphorus acquisition by B. papyrifera seedlings compared with single fungal inoculations. Nitrogen and phosphorus acquisition by B. papyrifera mycorrhizal seedlings was significantly greater than that of B. pilosa mycorrhizal seedlings. Fungal composition significantly influenced the mycorrhizal benefits of biomass and phosphorus acquisition and mixed fungal inoculations enhanced nitrogen acquisition. Plant species significantly affected nitrogen acquisition but did not have an effect on biomass and phosphorus benefits. We concluded that AM fungal associations increased plant growth and nutrient absorption and that in general a mixed inoculation of AM fungi enhanced biomass and nutrient acquisition more than a single AM fungal inoculation. In addition, a mycorrhizal association was more beneficial for B. papyrifera seedlings in terms of biomass and nutrient acquisition than for B. pilosa seedlings.


Keywords: Arbuscular mycorrhizae; fungal composition; karst environments; nutrient acquisition



Pengaruh komposisi komuniti kulat mikoriza arbuskul (AM) terhadap sifat tumbuhan daripada spesies tumbuhan berbeza dalam persekitaran kars masih kurang difahami. Broussonetia papyrifera (pokok renek berkayu) dan Bidens pilosa (herba) yang tumbuh di dalam pasu dalam tanah batu kapur telah diinokulat dengan kulat AM seperti Funneliformis mosseae (FM), Diversispora versiformis (DV) atau Glomus diaphanum (GD) atau campuran inokulum ketiga-tiga kulat AM (MI). Benih B. papyrifera dan B. pilosa yang diinokulat dengan kulat AM menunjukkan kenaikan ketara dalam pemerolehan biojisim, nitrogen dan fosforus berbanding dengan sampel kawalan yang kurang mikoriza. Inokulasi kulat campuran telah menyebabkan peningkatan pemerolehan biojisim, nitrogen dan fosforus yang ketara oleh benih B. papyrifera berbanding inokulasi kulat tunggal. Pemerolehan nitrogen dan fosforus oleh benih mikoriza B. papyrifera jauh lebih ketara daripada benih mikoriza B. pilosa. Komposisi kulat memberi kesan ketara terhadap pemerolehan biojisim dan fosforus mikoriza manakala inokulasi fungus campuran telah meningkatkan pemerolehan nitrogen. Spesies tumbuhan memberi kesan ketara terhadap pemerolehan nitrogen tetapi tidak mempunyai kesan ke atas pemerolehan biojisim dan fosforus. Kesimpulannya, hubungan kulat AM telah meningkatkan pertumbuhan tumbuhan dan penyerapan nutrien dan secara amnya ialah inokulasi campuran kulat AM telah meningkatkan pemerolehan biojisim dan nutrien lebih daripada inokulasi kulat AM tunggal. Di samping itu, hubungan mikoriza lebih bermanfaat untuk benih B. papyrifera daripada segi pemerolehan biojisim dan nutrien daripada benih B. Pilosa.


Kata kunci: Komposisi kulat; mikoriza arbuskul; pemerolehan nutrien; persekitaran kars


Bao, S.D. 2000. Soil and agricultural chemistry analysis. Agric. Press of China. Beijing (in Chinese).

Bavaresco, L., Cantù, E. & Trevisan, M. 2000. Chlorosis occurrence, natural arbuscular-mycorrhizal infection and stilbene root concentration of ungrafted grapevine rootstocks growing on calcareous soil. Journal Plant of Nutrition 23: 1685-1697.

Bever, J.D., Dickie, I.A., Facelli, E., Facelli, J.M., Klironomos, J., Moora, M., Rillig, M.C., Stock, W.D., Tibbett, M. & Zobel, M. 2010. Rooting theories of plant community ecology in microbial interactions. Trends in Ecology & Evolution 25: 468-478.

Brachmann, A. & Parniske, M. 2006. The most widespread symbiosis on earth. PLoS Biology 4: e239.

Brundrett, M.C. 2009. Mycorrhizal associations and other means of nutrition of vascular plants: Understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant and Soil 320: 37-77.

Brundrett, M.C., Piché, Y. & Peterson, R.L. 1984. A new method for observing the morphology of vesicular-arbuscular mycorrhizae. Canadian Journal of Botany 62: 2128-2134.

Çakan, H. & Karataş, Ç. 2006. Interactions between mycorrhizal colonization and plant life forms along the successional gradient of coastal sand dunes in the eastern Mediterranean, Turkey. Ecological Research 21: 301-310.

Davison, J., Opik, M., Daniell, T.J., Moora, M. & Zobel, M. 2011. Arbuscular mycorrhizal fungal communities in plant roots are not random assemblages. FEMS Microbioogyl Ecology 78: 103-115.

Diaz, S. & Cabido, M. 1997. Plant functional types and ecosystem function in relation to global change. Journal of Vegetative Science 8(4): 463-474.

Edathil, T.T., Manian, S. & Udaiyan, K. 1996. Interaction of multiple VAM fungal species on root colonization, plant growth and nutrient status of tomato seedlings (Lycopersicon esculentum Mill.). Agriculture Ecosystem & Environment 59: 63-68.

Giovannetti, M. & Mosse, B. 1980. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist 84: 489-500.

Grime, J., Mackey, J., Hillier, S. & Read, D. 1987. Floristic diversity in a model system using experimental microcosms. Nature 328: 420-422.

Gustafson, D.J. & Casper, B.B. 2006. Differential host plant performance as a function of soil arbuscular mycorrhizal fungal communities: Experimentally manipulating co-occurring Glomus species. Plant Ecology 183: 257-263.

Hart, M.M., Forsythe, J., Oshowski, B., Bücking, H., Jansa, J. & Kiers, E.T. 2013. Hiding in a crowd-does diversity facilitate persistence of a low-quality fungal partner in the mycorrhizal symbiosis? Symbiosis 59: 47-56.

Jansa, J., Smith, F.A. & Smith, S.E. 2008. Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytologist 177: 779-789.

Johnson, N.C. 1993. Can fertilization of soil select less mutualistic mycorrhizae? Ecological Applications 3: 749-757.

Kiers, E.T., Duhamel, M., Beesetty, Y., Mensah, J.A., Franken, O., Verbruggen, E., Fellbaum, C.R., Kowalchuk, G.A., Hart, M.M. & Bago, A. 2011. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333: 880-882.

Koide, R.T. 2000. Functional complementarity in the arbuscular mycorrhizal symbiosis. New Phytologist 147: 233-235.

Koide, R.T. & Mosse, B. 2004. A history of research on arbuscular mycorrhiza. Mycorrhiza 14: 145-163.

Kormanik, P.P., Bryan, W.C. & Schultz, R.C. 1980. Procedures and equipment for staining large numbers of plant root samples for endomycorrhizal assay. Canadian Journal of Microbiology 26: 536-538.

Krak, K., Janoušková, M., Caklová, P., Vosátka, M. & Štorchová, H. 2012. Intraradical dynamics of two coexisting isolates of the arbuscular mycorrhizal fungus Glomus intraradices sensu lato as estimated by real-time PCR of mitochondrial DNA. Applied and Environmental Microbiology 78: 3630-3637.

Lavorel, S., McIntyre, S., Landsberg, J. & Forbes, D. 1997. Plant functional classifications: From general groups to specific groups based on response to disturbance. Trends in Ecology and Evolution 12: 474-478.

Lekberg, Y., Gibbons, S.M., Rosendahl, S. & Ramsey, P.W. 2013. Severe plant invasions can increase mycorrhizal fungal abundance and diversity. ISME Journal 7: 1424-1433.

Likar, M., Hancevic, K., Radic, T. & Regvar, M. 2013. Distribution and diversity of arbuscular mycorrhizal fungi in grapevines from production vineyards along the eastern Adriatic coast. Mycorrhiza 23: 209-219.

Liu, C., Liu, Y., Guo, K., Wang, S. & Yang, Y. 2014. Concentrations and resorption patterns of 13 nutrients in different plant functional types in the karst region of south-western China. Annals of Botany 113: 873-885.

Lopez-Garcia, A., Palenzuela, J., Miguel Barea, J. & Azcon- Aguilar, C. 2014. Life-history strategies of arbuscular mycorrhizal fungi determine succession into roots of Rosmarinus officinalis L., a characteristic woody perennial plant species from Mediterranean ecosystems. Plant and Soil 379: 247-260.

Martinez-Garcia, L.B. & Pugnaire, F.I. 2011. Arbuscular mycorrhizal fungi host preference and site effects in two plant species in a semiarid environment. Applied Soil Ecology 48: 313-317.

Nelson, D. & Sommers, L.E. 1982. Total carbon, organic carbon, and organic matter. Methods of Soil Analysis Part 2 Chemical and Microbiological Properties. Location: Publisher. pp. 539-579.

Perez, M. & Urcelay, C. 2009. Differential growth response to arbuscular mycorrhizal fungi and plant density in two wild plants belonging to contrasting functional types. Mycorrhiza 19: 517-523.

Powell, J.R., Anderson, I.C. & Rillig, M.C. 2013. A new tool of the trade: Plant-trait based approaches in microbial ecology. Plant and Soil 365: 35-40.

Sanchez-Castro, I., Ferrol, N. & Barea, J.M. 2012. Analyzing the community composition of arbuscular mycorrhizal fungi colonizing the roots of representative shrubland species in a Mediterranean ecosystem. Journal of Arid Environments 80: 1-9.

Sanders, I.R. 2003. Preference, specificity and cheating in the arbuscular mycorrhizal symbiosis. Trends in Plant Science 8: 143-145.

Scheublin, T.R., Ridgway, K.P., Young, J.P.W. & van der Heijden, M.G.A. 2004. Nonlegumes, legumes, and root nodules harbor different arbuscular mycorrhizal fungal communities. Applied and Environmental Microbiology 70: 6240-6246.

Smith, S.E. & Read, D.J. 2010. Mycorrhizal Symbiosis. New York: Academic Press.

Thonar, C., Schnepf, A., Frossard, E., Roose, T. & Jansa, J. 2011. Traits related to differences in function among three arbuscular mycorrhizal fungi. Plant and Soil 339: 231-245.

Urcelay, C. & Diaz, S. 2003. The mycorrhizal dependence of subordinates determines the effect of arbuscular mycorrhizal fungi on plant diversity. Ecology Letters 6: 388-391.

Urcelay, C., Díaz, S., Gurvich, D.E., Chapin Iii, F.S., Cuevas, E. & Domínguez, L.S. 2009. Mycorrhizal community resilience in response to experimental plant functional type removals in a woody ecosystem. Journal of Ecology 97: 1291-1301.

Van Tuinen, D., Jacquot, E., Zhao, B., Gollotte, A. & Gianinazzi- Pearson, V. 1998. Characterization of root colonization profiles by a microcosm community of arbuscular mycorrhizal fungi using 25S rDNA-targeted nested PCR. Molecular Ecology 7: 879-887.

Vandenkoornhuyse, P., Ridgway, K.P., Watson, I.J., Fitter, A.H. & Young, J.P.W. 2003. Co-existing grass species have distinctive arbuscular mycorrhizal communities. Molecular Ecology 12: 3085-3095.

Vogelsang, K.M., Reynolds, H.L. & Bever, J.D. 2006 Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system. New Phytologist 172: 554-562.

Wagg, C., Jansa, J., Schmid, B. & van der Heijden, M.G. 2011. Belowground biodiversity effects of plant symbionts support aboveground productivity. Ecology Letters 14: 1001-1009.

Wang, S.J., Liu, Q.M. & Zhang, D.F. 2004. Karst rocky desertification in southwestern China: Geomorphology, landuse, impact and rehabilitation. Land Degradation & Development 15: 115-121.

Wei, Y. 2012. Molecular diversity and distribution of arbuscular mycorrhizal fungi in karst ecosystem, Southwest China. African Journal Biotechnology 11: 14561-14568.

Yang, C., Hamel, C., Schellenberg, M.P., Perez, J.C. & Berbara, R.L. 2010. Diversity and functionality of arbuscular mycorrhizal fungi in three plant communities in semiarid Grasslands National Park, Canada. Microbial Ecology 59: 724-733.

Yang, H., Zang, Y., Yuan, Y., Tang, J. & Chen, X. 2012. Selectivity by host plants affects the distribution of arbuscular mycorrhizal fungi: Evidence from ITS rDNA sequence metadata. BMC Evolutionary Biology 12: 50.

Zhang, Z., Zhang, J. & Huang, Y. 2014. Effects of arbuscular mycorrhizal fungi on the drought tolerance of Cyclobalanopsis glauca seedlings under greenhouse conditions. New Forest 45: 545-556.

Zhu, H., He, X., Wang, K., Su, Y. & Wu, J. 2012. Interactions of vegetation succession, soil bio-chemical properties and microbial communities in a Karst ecosystem. European Journal of Soil Biology 51: 1-7.



*Corresponding author; email: