Sains Malaysiana 46(10)(2017): 1757–1762

http://dx.doi.org/10.17576/jsm-2017-4610-12

 

The Comparative Evaluation of Carbon Mineralization in Soils Contaminated and Uncontaminated with Chromium

(Penilaian Bandingan terhadap Mineralisasi Karbon dalam Tanah yang Tercemar dan Tak Tercemar dengan Kromium)

 

NACIDE KIZILDAĞ1*, HÜSNIYE AKA SAĞLIKER2 & CENGIZ DARICI3

 

1Central Research Laboratory, Çukurova University, 01330, Adana, Turkey

 

2Faculty of Science and Letters, Department of Biology, Osmaniye Korkut Ata University, 80000 Osmaniye, Turkey

 

3Faculty of Science and Letters, Department of Biology, Çukurova University, 01330, Adana,

Turkey

 

Received: 10 December 2016/Accepted: 14 March 2017

 

 

ABSTRACT

The environmental risk of Chromium (Cr) pollution is pronounced in soils adjacent to chromate industry. It is important to investigate the functioning of soil microorganisms in ecosystems exposed to long-term contamination by Cr. The aim of this study was to determine the effects of Cr on carbon mineralization in soil. The study was carried out in soils contaminated and uncontaminated with Cr near and away from a Cr mine in three different districts (Bozluk, Kızılyüksek and Yanıkçam) of East Mediterranean Region, Turkey. Carbon mineralization were determined in soils humidified 80% of field capacity at 28°C over 30 days under the same laboratory conditions. These results showed that carbon mineralization was greatly inhibited by the presence of Cr in all contaminated sites. Based on these results, microbial activity can use as an indicator for the Cr pollution level in the soil ecosystems.

 

Keywords: Carbon mineralization; chromium; contamination; soil microorganisms; toxic effect

 

ABSTRAK

Risiko alam sekitar bagi pencemaran kromium (Cr) boleh dilihat pada tanah bersebelahan dengan industri kromat. Ia adalah penting untuk mengkaji kefungsian mikroorganisma tanah dalam ekosistem yang sudah terdedah kepada pencemaran jangka lama terhadap Cr. Tujuan kajian ini adalah untuk menentukan kesan Cr pada mineralisasi karbon dalam tanah. Kajian ini dijalankan pada tanah yang tercemar dan tidak tercemar dengan Cr yang berhampiran dan jauh dari lombong Cr di tiga daerah (Bozluk, Kızılyüksek dan Yanıkçam) di kawasan Mediterranean Timur, Turki. Pemineralan karbon ditentukan dalam tanah yang dilembapkan pada 80% had basah tanih pada suhu 28°C selama 30 hari pada keadaan makmal yang sama. Keputusan menunjukkan bahawa mineralisasi karbon sangat terencat dengan kehadiran Cr pada semua kawasan yang tercemar. Berdasarkan hasil ini, aktiviti mikrob boleh digunakan sebagai penunjuk tahap pencemaran Cr dalam ekosistem tanah.

 

Kata kunci: Kesan toksik; kromium; mikroorganisma tanah; pemineralan karbon; pencemaran

REFERENCES

Aka, H. & Darıcı, C. 2004. Carbon and nitrogen mineralization of lead treated soils in the eastern mediterranean region, Turkey. Soil and Sediment Contamination 13(3): 255-265.

Allison, L.E. & Moodie, C.D. 1965. Carbonate. In Methods of Soil Analysis Part 2. Chemical and Microbiological Properties. Monogr. 9. 2nd ed., edited by Black, C.A., Evans, D.D., Ensminger, L.E., White, J.L. & Clark, F.E. Madison (WI): Agronomy Society of America and Soil Science Society of America. pp. 1379-1396.

Al-Khashman, O.A. & Shawabkeh, R.A. 2006. Metals distribution in soils around the cement factory in southern Jordan. Environmental Pollution 140: 387-394.

Baath, E. & Arnebrant, K. 1994. Growth rate and response of bacterial communities to pH in limed and ash treated forest soils. Soil Biology and Biochemistry 26: 995-1001.

Bartlett, R. & James, B. 1978. Behavior of chromium in soils: III. Oxidation. Journal of Environmental Quality 8: 31-35.

Becquer, T., Quantin, C., Sicot, M. & Boudot, J.P. 2003. Chromium availability in ultramafic soils from New Caledonia. Science of the Total Environment 301: 251-261.

Benlot, C. 1977. Recherches sur les activites biochimiques dans les successions de sols derives de cendres volcaniques sous climat tropical humide (Zaire- Indonesie). ENS Lab., De Zoologie, Paris. pp. 73-76.

Brookes, P.C. 1995. The use of microbial parameters in monitoring soil pollution by heavy metals. Biology and Fertility of Soils 19: 269-279.

Bouyoucos, G.S. 1951. A recalibration of the hydrometer for making mechanical analysis of soil. Agronomy Journal 43: 434-438.

Boteva, S., Radeva, G., Traykov, I. & Kenarova, A. 2016. Effects of long-term radionuclide and heavy metal contamination on the activity of microbial communities, inhabiting uranium mining impacted soils. Environmental Science and Pollution Research 23: 5644-5653.

Chibuike, G.U. & Obiora, S.C. 2014. Heavy metal polluted soils: Effect on plants and bioremediation methods. Applied and Environmental Soil Science 5: 1-12.

Ciarkowska, K., Gargiulo, L. & Mele, G. 2016. Natural restoration of soils on mine heaps with similar technogenic parent material: A case study of long-term soil evolution in Silesian-Krakow upland Poland. Geoderma 261: 141-150.

Dai, J., Becquer, T., Rouiller, H., Reversat, G., Bernhard- Reversat, F. & Lavelle, P. 2004. Influence of heavy metals on C and N mineralization and microbial biomass in Zn-, Pb-, Cu- , and Cd-contaminated soils. Applied Soil Ecology 25: 99-109.

Demiralay, İ. 1993. Toprak fiziksel analizleri. Atatürk Üniversitesi Ziraat Fakültesi Yayınları 143: 6-51.

Duchaufour, P. 1970. Precis de Pedologie. Masson et Cie.

Dumestre, A., Sauvé, S., McBride, M.B., Baveye, P. & Berthelin, J. 1999 Copper speciation and microbial activity in long-term contaminated soils. Archives of Environmental Contamination and Toxicology 36: 124-131.

Friedlová, M. 2010. The influence of heavy metals on soil biological and chemical properties. Soil and Water Research 5: 21-27.

Frouz, J., Elhottová, D., Pižl, V., Tajovskı, K., Šourková, M., Picek, T. & Malı, S. 2007. The effect of litter quality and soil faunal composition on organic matter dynamics in post-mining soil: A laboratory study. Applied Soil Ecology 37: 72-80.

Huang, S.H., Peng, B., Yang, Z.H., Chai, L.Y. & Zhou, L.C. 2009. Chromium accumulation, microorganism population and enzyme activities in soils around chromium-containing slag heap of steel alloy factory. Transactions of Nonferrous Metals Society of China 19: 241-248.

Huot, H., Simonnot, M.O., Marion, P.H., Yvon, J., De Donato, P.H. & Morel, J.L. 2013. Characteristics and potential pedogenetic processes of a Technosol developing on iron industry deposits. Journal of Soils and Sediments 13: 555- 568.

Jackson, M.L. 1958. Soil Chemical Analysis. Eaglewood Cliffs: Prentice-Hall, Inc.

James, B.R. 1996. The challenge of remediating chromium-contaminant soil. Environmental Science and Technology 30: 248-257.

Kot, A. & Namiesnèik, J. 2000. The role of speciation in analytical chemistry. Trends in Analytical Chemistry 19: 69-79.

Marschner, B. & Kalbitz, K. 2003. Control of bioavailability and biodegradation of dissolved organic matter in soils. Geoderma 113: 211-235.

Matos, A.T., Fontes, M.P.F., Costa, L.M. & Martinez, M.A. 2001. Mobility of heavy metals as related to soil chemical and mineralogical characteristics of Brazilian soils. Environmental Pollution 111: 429-435.

Megharaj, M., Avudainayagam, S. & Naidu, R. 2003. Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Current Microbiology 47: 51-54.

Mukherjee, K., Saha, R., Ghosh, A., Gosh, S.K., Maji, P.K. & Saha, B. 2014. Surfactant assisted bioremediation of hexavalent chromium by use of an aqueous extract of sugarcane bagasse. Research on Chemical Intermediates 40: 1727-1734.

Nwuche, C.O. & Ugoji, E.O. 2008. Effects of heavy metal pollution on the soil microbial activity. International Journal of Environmental Science and Technology 5: 409-414.

Obbard, P. 2001. Ecotoxicological assessment of heavy metals in sewage sludge amended soils. Applied Geochemistry 16: 1405-1411.

Owlad, M., Aroua, M.K. & Daud, W.M.A.W. 2010. Hexavalent chromium adsorption on impregnated palm shell activated carbon with polyethyleneimine. Biosource Technology 101: 5098-5103.

Palmer, C.D. & Wittbrodt, P.R. 1991. Processes affecting the remediation of chromium-contaminated sites. Environmental Health Perspectives 92: 25-40.

Schaefer, R. 1967. Caracteres et evolution des activites microbiennes dans une chaine de sols hydromorphes mesotrophiques de la plaine d’alsace première partie: Cadre géographique et milieu édaphique (Doctoral dissertation) (Unpublished).

Schulin, R. 2007. Heavy metal contamination along a soil transect in the vicinity of the iron smelter of Kremikovtzi. Geoderma 140: 52-61.

Viti, C. 2006. Response of microbial communities to different doses of chromate in soil microcosms. Applied Soil Ecology 34: 125-139.

Wang, J., Lu, Y. & Shen, G. 2007. Combined effects of cadmium and butachlor on soil enzyme activities and microbial community structure. Environmental Geology 51: 1221-1228.

Zayed, A.M. & Terry, N. 2003. Chromium in the environment: Factors affecting biological remediation. Plant and Soil 249: 139-156.

 

 

*Corresponding author; email: nkizildag@cu.edu.tr

 

 

 

 

 

 

previous