Sains Malaysiana 46(10)(2017): 18171823

http://dx.doi.org/10.17576/jsm-2017-4610-19

 

Sintesis dan Pencirian Getah Asli Cecair Terhidrogen untuk Adunan Polimer

(Synthesis and Characterization of Hydrogenated Liquid Natural Rubber for Polymer Blending)

 

MUHAMMAD JEFRI MOHD YUSOF, IBRAHIM ABDULLAH & SITI FAIRUS M YUSOFF*

 

Pusat Pengajian Sains Kimia dan Teknologi Makanan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 9 March 2017/Accepted: 20 September 2017

 

ABSTRAK

Sistem hidrazin hidrat/hidrogen peroksida (HH/H2O2) digunakan untuk menjana sumber hidrogen bagi tujuan penghidrogenan getah asli cecair (LNR) melalui penghasilan diimida. Spesies diimida yang terhasil akan membekalkan sumber hidrogen kepada ikatan karbon ganda dua dalam rantai polimer LNR. Getah asli cecair terhidrogen (HLNR) yang terhasil menunjukkan ciri lebih tahan suhu berbanding LNR. Suhu degradasi HLNR didapati meningkat pada 435C berbanding LNR iaitu pada 381C. HLNR seterusnya dijadikan pengserasi dalam penghasilan adunan polimer polistirena/getah asli, PS/NR/HLNR (60/35/5). Kekuatan regangan dan impak PS/NR masing-masing meningkat sebanyak 70.7% dan 149.6% setelah HLNR ditambah sebagai pengserasi dalam adunan. Beberapa pemerhatian morfologi melalui mikroskop optik dan SEM turut menyokong kesan penyerasian adunan PS/NR dengan HLNR.

 

Kata kunci: Adunan polimer; diimida; penghidrogenan; pengserasi; spektroskopi

 

ABSTRACT

Hydrazine hydrate/hydrogen peroxide system (HH/H2O2) was used in this study to generate hydrogen source for the hydrogenation of LNR via production of diimide. Those diimide species supplied hydrogen source to be bonded with the double bonds of LNR. HLNR exhibited improved thermal properties than LNR. The degradation temperature of HLNR was found to be higher at 435C than LNR that was only at 381C. HLNR was then used as a compatibilizer in the polymer blending of polystyrene/natural rubber, PS/NR/HLNR (60/35/5). The tensile strength and impact strength of PS/NR were increased 70.7% and 149.6%, respectively, when HLNR was added into the blends. Several morphological observations through optical microscope and SEM supported the compatibilizing effect of HLNR in PS/NR blending.

 

Keywords: Compatibilizer; diimide; hydrogenation; polymer blending; spectroscopy

REFERENCES

Ahmad, N., Abnisa, F. & Daud, W.M.A.W. 2016. Potential use of natural rubber to produce liquid fuels using hydrous pyrolysis-a review. RSC Advances 6(73): 68906-68921.

Ai, C., Gong, G., Zhao, X. & Liu, P. 2017. Macroporous hollow silica microspheres-supported palladium catalyst for selective hydrogenation of nitrile butadiene rubber. Journal of the Taiwan Institute of Chemical Engineers 77: 250-256.

Azhar, N.H.A., Rasid, H.M. & Yusoff, S.F.M. 2017. Epoxidation and hydroxylation of liquid natural rubber. Sains Malaysiana 46(3): 485-491.

Blanco, I., Abate, L., Bottino, F.A. & Bottino, P. 2014. Thermal behaviour of a series of novel aliphatic bridged polyhedral oligomeric silsesquioxanes (POSSs)/polystyrene (PS) nanocomposites: The influence of the bridge length on the resistance to thermal degradation. Polymer Degradation and Stability 102: 132-137.

Cao, P., Ni, Y., Zou, R., Zhang, L. & Yue, D. 2015a. Enhanced catalytic properties of rhodium nanoparticles deposited on chemically modified SiO2 for hydrogenation of nitrile butadiene rubber. RSC Advances 5(5): 3417-3424.

Cao, P., Wu, M., Zou, R., Zhang, L. & Yue, D. 2015b. A ternary Rh complex catalyst highly active and stable in the hydrogenation of acrylonitrile-butadiene rubber. New Journal of Chemistry 39(3): 1583-1586.

Chumeka, W., Pasetto, P., Pilard, J.F. & Tanrattanakul, V. 2014. Bio-based triblock copolymers from natural rubber and poly (lactic acid): Synthesis and application in polymer blending. Polymer 55(17): 4478-4487.

Effah, B., van Reenen, A. & Meincken, M. 2017. Mechanical properties of wood-plastic composites made from various wood species with different compatibilisers. European Journal of Wood and Wood Products https://doi.org/10.1007/s00107-017-1186-7.

Jamaluddin, N., Yusof, M.J.M., Abdullah, I. & Yusoff, S.F.M. 2016. Synthesis, characterization, and properties of hydrogenated liquid natural rubber. Rubber Chemistry and Technology 89(2): 227-239.

Jose, S., Parameswaranpillai, J., Francis, B., Aprem, A.S. & Thomas, S. 2016. Thermal degradation and crystallization characteristics of multiphase polymer systems with and without compatibilizer. Aims Materials Science 3(3): 1177- 1198.

Joumaa, A., Chen, S., Vincendeau, S., Gayet, F., Poli, R. & Manoury, E. 2017. Rhodium-catalyzed aqueous biphasic hydrogenation of alkenes with amphiphilic phosphine-containing core-shell polymers. Molecular Catalysis 438: 267-271.

Kongparakul, S., Ng, F.T.T. & Rempel, G.L. 2011. Methatesis hydrogenation of natural rubber latex. Journal of Applied Catalysis 405: 129-136.

Liu, J., Tian, X.H., Sun, J.Y., Wang, S.Y. & Duan, J.C. 2016. Mechanical properties and thermal resistance of natural rubber nanocomposite reinforced with quaternized polyvinyl alcohol/silica nanoclusters. Journal of Nano Research 43: 46-56.

Mohamad, N., Yaakub, J., Abd Razak, J., Yaakob, M.Y., Shueb, M.I. & Muchtar, A. 2014. Effects of epoxidized natural rubber (ENR50) and processing parameters on the properties of NR/EPDM blends using response surface methodology. Journal of Applied Polymer Science 131(17): DOI: 10.1002/ app.40713.

Orathai, B., Ariffin, A., Rashid, A., Masahiro, O. & Saowaroj, C. 2010. Effect of polystyrene-modified natural rubber (SNR) on mechanical properties of waste natural rubber latex/ polystyrene blend (WNRL/PS). E-Prints USM 1-4.

Ramarad, S., Khalid, M., Ratnam, C.T., Chuah, A.L. & Rashmi, W. 2015. Waste tire rubber in polymer blends: A review on the evolution, properties and future. Progress in Materials Science 72: 100-140.

Reddy, N., Reddy, R. & Jiang, Q. 2015. Crosslinking biopolymers for biomedical applications. Trends in Biotechnology 33(6): 362-369.

Samran, J., Phinyocheep, P., Daniel, P. & Kittipoom, S. 2005. Hydrogenation of unsaturated rubbers using diimide as a reducing agent. Journal of Applied Polymer Science 95(1): 16-27.

Simma, K., Rempel, G.L. & Prasassarakich, P. 2009. Improving thermal and ozone stability of skim natural rubber by diimide reduction. Polymer Degradation and Stability 94(11): 1914- 1923.

Wideman, L.G. 1984. Heating with Oxidant, Hydrazine and Metal Salt. U.S. Patent 4452950 A.

Wu, W., Zhai, Y., Zhang, Y. & Ren, W. 2014. Mechanical and microwave absorbing properties of in situ prepared hydrogenated acrylonitrile-butadiene rubber/rare earth acrylate composites. Composites Part B: Engineering 56: 497-503.

Zhang, Y., Liu, Q., Xiang, J. & Frost, R.L. 2014. Thermal stability and decomposition kinetics of styrene-butadiene rubber nanocomposites filled with different particle sized kaolinites. Applied Clay Science 95: 159-166.

Zolali, A.M. & Favis, B.D. 2017. Compatibilization and toughening of co-continuous ternary blends via partially wet droplets at the interface. Polymer 114: 277-288.

 

 

*Corresponding author; email: sitifairus@ukm.edu.my

 

 

 

 

 

 

previous