Sains Malaysiana 46(10)(2017): 1923–1933


The Influence of Geometrical Shapes of Stenosis on the Blood Flow in Stenosed Artery

(Pengaruh Bentuk Geometri Stenosis ke atas Aliran Darah dalam Arteri Stenos)





1Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia


2Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha - 61421, Kingdom of Saudi Arabia


3Mathematics Department, Faculty of Science, University of Tabuk, Saudi Arabia


4Department of Mechanical and Industrial Engineering, Mekelle University, Mekelle, Ethiopia


5Department of Mechanical and Industrial Engineering, Sultan Qaboos University, 33, Alkhoud, Muscat, 123, Oman


6Department of Mechanical Engineering, CMR Technical Campus, Hyderabad, India


Received: 9 March 2016/Accepted: 20 March 2017



The present work was carried out to investigate the blood flow behavior and the severity of blockage caused in the arterial passage due to the different geometries such as elliptical, trapezium and triangular shapes of stenosis. The study was conducted with respect to various sizes of stenosis in terms of 70%, 80% and 90% area blockage of the arterial blood flow. The study was carried out numerically with the help of advance computational fluid dynamic software. It was found that the shape of the stenosis plays an important role in overall pressure drop across the blockage region of artery. The highest level of pressure drop was observed for trapezoidal shape of stenosis followed by elliptical and then by triangular shaped stenosis. The wall shear stress across the stenosis is great for trapezoidal shape followed by triangular and elliptical stenosis for same blockage area in the artery.


Keywords: CFD; coronary artery; non-Newtonian flow; stenosis



Kajian ini dijalankan untuk mengkaji sifat aliran darah dan keterukan laluan arteri yang tersumbat disebabkan oleh geometri stenosis yang berbeza seperti elips, trapezium dan bentuk segi tiga. Kajian ini dijalankan dengan pelbagai saiz stenosis pada kadar saiz sumbatan laluan arteri 70%, 80% dan 90%. Kajian ini dijalankan dengan kaedah berangka menggunakan perisian dinamik bendalir. Hasil kajian mendapati bahawa bentuk stenosis memainkan peranan penting dalam penurunan tekanan keseluruhan pada kawasan arteri yang tersumbat. Tahap tertinggi kejatuhan tekanan diperhatikan berlaku pada stenosis yang berbentuk trapezoid diikuti oleh elips dan kemudian oleh stenosis berbentuk segi tiga. Tegasan ricih permukaan seluruh stenosis yang paling besar adalah untuk bentuk trapezoid, diikuti oleh stenosis segi tiga dan elips.


Kata kunci: Aliran bukan Newtonian; arteri koronari; stenosis; CFD


Banerjee, R.K., Back, L.H., Back, M.R. & Cho, Y.I. 2003. Physiological flow analysis in significant human coronary artery stenoses. Biorheology 40(4): 451-476.

Berglund, H., Luo, H., Nishioka, T., Fishbein, M.C., Eigler, N.L., Tabak, S.W. & Siegel, R.J. 1997. Highly localized arterial remodeling in patients with coronary atherosclerosis. Circulation 96(5): 1470-1476.

Chaichana, T., Sun, Z. & Jewkes, J. 2012. Computational fluid dynamics analysis of the effect of plaques in the left coronary artery. Computational and Mathematical Methods in Medicine 2012: Article ID. 504367.

Chaichana, T., Sun, Z. & Jewkes, J. 2013. Haemodynamic analysis of the effect of different types of plaques in the left coronary artery. Computerized Medical Imaging and Graphics 37(3): 197-206.

Chaichana, T., Sun, Z. & Jewkes, J. 2014. Impact of plaques in the left coronary artery on wall shear stress and pressure gradient in coronary side branches. Computer Methods in Biomechanics and Biomedical Engineering 17(2): 108-118.

Dash, R.K., Jayaraman, G. & Mehta, K.N. 1999. Flow in a catheterized curved artery with stenosis. Journal of Biomechanics 32(1): 49-61.

Deshpande, M.D., Giddens, D.P. & Mabon, R.F. 1976. Steady laminar flow through modelled vascular stenoses. Journal of Biomechanics 9(4): 165-174.

Fatemi, R.S. & Rittgers, S.E. 1994. Derivation of shear rates from near-wall LDA measurements under steady and pulsatile flow conditions. Transactions-American Society of Mechanical Engineers Journal of Biomechanical Engineering 116: 361-361.

Fry, D.L. 1973. Responses of the arterial wall to certain physical factors. In Ciba Foundation Symposium 12 - Atherogenesis: Initiating Factors, edited by Porter, R. & Knight, J. John Chichester: Wiley & Sons, Ltd. doi: 10.1002/9780470719954. ch5.

Giddens, D.P., Mabon, R.F. & Cassanova, R.A. 1976. Measurements of disordered flows distal to subtotal vascular stenoses in the thoracic aortas of dogs. Circulation Research 39(1): 112-119.

Govindaraju, K., Badruddin, I.A., Viswanathan, G.N., Kamangar, S., Ahmed, N.S. & Al-Rashed, A.A. 2016a. Influence of variable bifurcation angulation and outflow boundary conditions in 3D finite element modelling of left coronary artery on coronary diagnostic parameter. Current Science 111(2): 368-374.

Govindaraju, K., Viswanathan, G.N., Badruddin, I.A., Kamangar, S., Ahmed, N.J. & Al-Rashed, A.A. 2016b. A parametric study of the effect of arterial wall curvature on non-invasive assessment of stenosis severity: Computational fluid dynamics study. Current Science 111(3): 483-491.

Govindaraju, K., Kamangar, S., Badruddin, I.A., Viswanathan, G.N., Badarudin, A. & Ahmed, N.S. 2014. Effect of porous media of the stenosed artery wall to the coronary physiological diagnostic parameter: a computational fluid dynamic analysis. Atherosclerosis 233(2): 630-635.

Ha, H. & Lee, S.J. 2014. Effect of swirling inlet condition on the flow field in a stenosed arterial vessel model. Medical Engineering & Physics 36(1): 119-128.

Jozwik, K. & Obidowski, D. 2010. Numerical simulations of the blood flow through vertebral arteries. Journal of Biomechanics 43(2): 177-185.

Kamangar, S., Badruddin, I.A., Badarudin, A., Nik-Ghazali, N., Govindaraju, K., Salman Ahmed, N.J. & Yunus Khan, T.M. 2017a. Influence of stenosis on hemodynamic parameters in the realistic left coronary artery under hyperemic conditions. Computer Methods in Biomechanics and Biomedical Engineering 20(4): 365-372.

Kamangar, S., Badruddin, I.A., Govindaraju, K., Nik-Ghazali, N., Badarudin, A., Viswanathan, G.N., Ahmed, N.S. & Khan, T.Y. 2017b. Patient-specific 3D hemodynamics modelling of left coronary artery under hyperemic conditions. Medical & Biological Engineering & Computing 111(2): 368-374.

Kamangar, S., Kalimuthu, G., Anjum Badruddin, I., Badarudin, A., Salman Ahmed, N.J. & Khan, T.M. 2014. Numerical investigation of the effect of stenosis geometry on the coronary diagnostic parameters. The Scientific World Journal 2014: Article ID 354946.

Kagadis, G.C., Skouras, E.D., Bourantas, G.C., Paraskeva, C.A., Katsanos, K., Karnabatidis, D. & Nikiforidis, G.C. 2008. Computational representation and hemodynamic characterization of in vivo acquired severe stenotic renal artery geometries using turbulence modeling. Medical Engineering & Physics 30(5): 647-660.

Keshavarz-Motamed, Z. & Kadem, L. 2011. 3D pulsatile flow in a curved tube with coexisting model of aortic stenosis and coarctation of the aorta. Medical Engineering & Physics 33(3): 315-324.

Khalifa, A.M.A. & Giddens, D.P. 1978. Analysis of disorder in pulsatile flows with application to poststenotic blood velocity measurement in dogs. Journal of Biomechanics 11(3): 129- 141.

Konala, B.C., Das, A. & Banerjee, R.K. 2011. Influence of arterial wall-stenosis compliance on the coronary diagnostic parameters. Journal of Biomechanics 44(5): 842-847.

Lee, T.S. 1994. Steady laminar fluid flow through variable constrictions in vascular tube. Journal of Fluids Engineering 116(1): 66-71.

Liu, B. 2007. The influences of stenosis on the downstream flow pattern in curved arteries. Medical Engineering & Physics 29(8): 868-876.

Lorenzini, G. & Casalena, E. 2008. CFD analysis of pulsatile blood flow in an atherosclerotic human artery with eccentric plaques. Journal of Biomechanics 41(9): 1862-1870.

Mallinger, F. & Drikakis, D. 2002. Instability in three-dimensional, unsteady, stenotic flows. International Journal of Heat and Fluid Flow 23(5): 657-663.

Misra, J.C. & Shit, G.C. 2006. Blood flow through arteries in a pathological state: A theoretical study. International Journal of Engineering Science 44(10): 662-671.

Moser, K.W., Kutter, E.C., Georgiadis, J.G., Buckius, R.O., Morris, H.D. & Torczynski, J.R. 2000. Velocity measurements of flow through a step stenosis using magnetic resonance imaging. Experiments in Fluids 29(5): 438-447.

O’Brien, V. & Ehrlich, L.W. 1985. I. Simple pulsatile flow in an artery with a constriction. Journal of Biomechanics 18(2): 117-127.

Paul, M.C. & Larman, A. 2009. Investigation of spiral blood flow in a model of arterial stenosis. Medical Engineering & Physics 31(9): 1195-1203.

Peelukhana, S.V., Back, L.H. & Banerjee, R.K. 2009. Influence of coronary collateral flow on coronary diagnostic parameters: An in vitro study. Journal of Biomechanics 42(16): 2753- 2759.

Rajabi-Jaghargh, E., Kolli, K.K., Back, L.H. & Banerjee, R.K. 2011. Effect of guidewire on contribution of loss due to momentum change and viscous loss to the translesional pressure drop across coronary artery stenosis: An analytical approach. Biomedical Engineering Online 10: 51.

Roy, A.S., Back, L.H. & Banerjee, R.K. 2006. Guidewire flow obstruction effect on pressure drop-flow relationship in moderate coronary artery stenosis. Journal of Biomechanics 39(5): 853-864.

Ryou, H.S., Kim, S., Kim, S.W. & Cho, S.W. 2012. Construction of healthy arteries using computed tomography and virtual histology intravascular ultrasound. Journal of Biomechanics 45(9): 1612-1618.

Shukla, J.B., Parihar, R.S. & Rao, B.R.P. 1980. Effects of stenosis on non-Newtonian flow of the blood in an artery. Bulletin of Mathematical Biology 42(3): 283-294.

Tang, D., Yang, C., Kobayashi, S., Zheng, J. & Vito, R.P. 2003. Effect of stenosis asymmetry on blood flow and artery compression: A three-dimensional fluid-structure interaction model. Annals of Biomedical Engineering 31(10): 1182-1193.

Tobis, J., Azarbal, B. & Slavin, L. 2007. Assessment of intermediate severity coronary lesions in the catheterization laboratory. Journal of the American College of Cardiology 49(8): 839-848.

Young, D.F. 1968. Effect of a time-dependent stenosis on flow through a tube. Journal of Manufacturing Science and Engineering 90(2): 248-254.


*Corresponding author; email: