Sains Malaysiana 47(4)(2018): 731-739

http://dx.doi.org/10.17576/jsm-2018-4704-11

 

Effect of Tea Polyphenols on α-Amylase Activity in Starch Hydrolysis

(Kesan Polifenol Teh terhadap Aktiviti α-Amilase pada Hidrolisis Kanji)

 

NURUL NADIAH BINTI ISMAIL, UTHUMPORN UTRA*, CHENG LAI HOONG & AZHAR BIN MAT ESA

 

Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Minden 11800, Pulau Pinang, Malaysia

 

Received: 13 June 2017/Accepted: 26 October 2017

 

 

ABSTRACT

 

Tea leaves (Camellia sinensis) contain bioactive compounds that can help prevent certain diseases. In this study, the inhibitory effect of polyphenolic components of different types of tea leaves (green, oolong and black) extracted using different solvents (ethanol, methanol and water) on α-amylase activity of human saliva were investigated in vitro. Total phenolic content (TPC), total flavonoid content (TFC), ferric reducing/antioxidant power and inhibition of free radical scavenging activity by 1,1-diphenyl-2-picrylhydrazyl of the extracts were measured. Content of gallic acid, caffeine and four catechins also were quantified by high performance liquid chromatography. The ethanol extracts had the highest TPC (124.34-231.23 mg gallic acid equivalents (GAE)/g sample), followed by the methanol extracts (124.28-209.76 mg GAE/g sample) and the water extracts (66.89-136.51 mg GAE/g sample). All three solvent extractions of green tea leaves contained the highest TPC, TFC and antioxidant activity, followed by oolong and black tea leaves. Green tea leaves contained higher amounts of catechins than oolong and black tea leaves. All four catechins were detected in green and oolong tea leaves but only gallocatechin gallate was found in black tea leaves. Next, the effect of tea leaves extracts on starch hydrolysis by α-amylase enzyme from human saliva at 37°C was studied. The starches were hydrolyzed with 0.01% enzyme for 240 min and the extent of hydrolysis was determined based on the dextrose equivalent value. The extent of starch hydrolysis by the tea leaves was as follows: green tea > oolong tea > black tea. The low degree of hydrolysis for black tea was due to its strong inhibitory effect on α-amylase activity. Thus, green, oolong and black tea leaves inhibit activity of α-amylase to different degrees due to their differing compositions and structures of phenolic compounds.

 

Keywords: α-amylase activity; black tea; green tea; hydrolyzing starch; oolong tea; phenolic content

 

 

ABSTRAK

 

Daun teh (Camellia sinensis) mempunyai sebatian bioaktif sebagai pencegahan penyakit tertentu. Penyelidikan ini mengkaji tentang kesan perencatan enzim α-amylase oleh komponen polifenol daripada pelbagai jenis daun teh (hijau, oolong dan hitam) dengan menggunakan kaedah pengekstrakan (etanol, metanol dan air) yang berlainan secara in vitro. Dalam kajian ini, penentuan jumlah kandungan fenolik (TPC), jumlah kandungan flavonoid (TFC), pengurangan kuasa ferum antioksidan (FRAP) dan perencatan aktiviti pembasmian radikal bebas oleh 1,1-difenil-2-picrilhidrazil (DPPH) dijalankan. Kandungan asid gallik, kafein dan empat jenis catechin telah dianalisis dan diukur dengan menggunakan alat analisis kromatografi cecair prestasi tinggi (HPLC). Pengekstrakan etanol menghasilkan jumlah kandungan fenolik tertinggi (124.34-231.23 mg GAE/g sampel), diikuti dengan pengekstrakan metanol (124.28-209.76 mg GAE/g sampel) dan pengekstrakan menggunakan air (66.89-136.51 mg GAE/g sampel). Ketiga-tiga jenis larutan pengekstrakan menunjukkan daun teh hijau mempunyai kandungan TPC, TFC dan antioksidan tertinggi diikuti oleh daun teh oolong dan daun teh hitam. Daun teh hijau mengandungi jumlah katekin lebih tinggi daripada daun teh oolong dan daun teh hitam. Keempat-empat katekin dijumpai terkandung dalam daun teh hijau dan teh oolong, tetapi hanya gallokatecin gallat sahaja dijumpai dalam teh hitam. Selain itu, kesan penambahan ekstrak daun teh pada hidrolisis kanji dengan menggunakan enzim α-amilase daripada air liur manusia pada suhu 37°C telah dikaji. Kanji telah dihidrolisiskan dengan menggunakan enzim berkepekatan 0.01% selama 240 min dan kadar hidrolisis ditentukan oleh nilai bersamaan dektrosa. Keputusan hidrolisis kanji ditunjukkan dalam urutan: teh hijau> teh oolong> teh hitam. Tahap hidrolisis terendah untuk teh hitam terbukti daripada perencatan tertinggi teh hitam pada aktiviti enzim α-amilase. Ini membuktikan bahawa penambahan daun teh yang berbeza menunjukkan tahap perencatan aktiviti enzim α-amilase yang berbeza kerana komposisi dan struktur sebatian fenolik yang berbeza pada setiap jenis daun teh.

 

Kata kunci: Aktiviti α-amilase; teh hitam; teh hijau; hidrolisis kanji; teh oolong; kandungan fenolik

 

 

REFERENCES

Ahmed, F. & Urooj, A. 2010. In vitro studies on the hypoglycemic potential of Ficus racemosa stem bark. Journal of the Science of Food and Agriculture 90(3): 397-401.

Alma, M.H., Mavi, A., Yildirim, A., Digrak, M. & Hirata, T. 2003. Screening chemical composition and in vitro antioxidant and antimicrobial activities of the essential oils from Origanum syriacum l. growing in turkey. Biological and Pharmaceutical Bulletin 26: 1725-1729.

Alothman, M., Bhat, R. & Karim, A.A. 2009. Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvent. Food Chemistry 115: 785-788.

Apostolidis, E. & Lee, C.M. 2010. In vitro potential of Ascophyllum nodosum phenolic antioxidant-mediated alpha–glucosidase and alpha-amylase. J. Food Sci. 75: 97-102.

Bailey, C.J. 2001. New approaches to the pharmacotherapy of diabetes. 3rd ed. In Text Book of Diabetes, edited by Pickup, J.C. & William, G. UK: Blackwell Science Ltd. 2: 73.1-73.2.

Balentine, D.A. 1997. Manufacturing and chemistry of tea. In Phenolic Compounds in Food and their Effects on Health, Antioxidants and Cancer Prevention, edited by Ho, C.T., Lee, C.Y. & Huang, M.T. Washington: American Chemical Society.

Benzie, I.F.F. & Szeto, Y.T. 1999. Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay. Journal of Agricultural and Food Chemistry 47: 633-636.

Bhoo, P.N., Peeters, P., van Gils, C., Beulens, J.W.J., van der Graaf, Y. & Bueno-de-Mesquita, B. 2010. Coffee and tea intake and risk of breast cancer. Breast Cancer Research and Treatment 121: 461-467.

Chan, E.W.C., Lim, Y.Y., Chong, K.L., Tan, J.B.L. & Wong, S.K. 2010. Antioxidant properties of tropical and temperate herbal teas. Journal of Food Composition and Analysis 23: 185-189.

Chen, N., Bezzina, R., Hinch, E., Lewandowski, P.A., Cameron- Smith, D., Mathai, M.L., Jois, M., Sinclair, A.J., Begg, D.P., Wark, J.D., Weisinger, H.S. & Weisinger, R.S. 2009. Green tea, black tea, and epigallocatechin modify body composition, improve glucose tolerance, and differentially alter metabolic gene expression in rats fed a high-fat diet. Nutr. Res. 29(11): 784-793.

Demiray, S., Pintado, M.E. & Castro, P.M.L. 2009. Evaluation of phenolic profiles and antioxidant activities of Turkish medical plants: Tilia argentea, Crataegi folium leaves and Polygonum bistorta roots. World Academy of Science, Engineering and Technology 3: 06-24.

Eklund, P.C., Langvik, O.K., Warna, J.P., Salmi, T.O., Willfor, S.M. & Sjoholm, R.E. 2005. Chemical studies on antioxidant mechanisms and free rradical scavenging properties of lignans. Organic and Bimolecular Chemistry 21: 3336-3347.

Gordon, J., Mcdougall, Faina, S., Patricia, D., Pauline, S., Alison, B. & Derek, S. 2005. Different polyphenolic components  of soft fruits inhibit α-amylase and α-lucosidase. J. Agric. Food Chem. 53: 2760-2766.

Hara, Y. & Honda, M. 1990. The inhibition of α-amylase in tea polyphenols. Agric. Biol. Chem. 54: 1939-1945.

Higdon, J.V. & Frei, B. 2003. Tea catechins and polyphenols: Health effects, metabolism and antioxidant functions. Crit. Rev. Food Sci. Nutr. 43: 89-143.

Horzic, D., Komes, D., Belscak, A., Ganic, K.K., Ivekovic, D. & Karlovic, D. 2009. The composition of polyphenols and methylxanthines in teas and herbal infusions. Food Chem. 115: 441-448.

Huafu, W., Gordon, J.P. & Keith, H. 2000. Tea flavonoids: Their functions, utilisation and analysis. Trends in Food Science & Technology 11: 152-160.

Jeszka-Skowron, M., Zgola-Grzes´kowiak, A. & Grzes´kowiak, T. 2015. Analytical methods applied for the characterization and the determination of bioactive compounds in coffee. Eur. Food Res. Technol. 240: 19-31.

Jianbo, X., Guoyin, K., Xiaoling N., Fan, Y. & Xiaoqing, C. 2011. Interaction of natural polyphenols with α-amylase in vitro: Molecular property–affinity relationship aspect. Mol. BioSyst. 7: 1883-1890.

Khokhar, S. & Magnusdottir, S.G.M. 2002. Total phenol, catechin, and caffeine contents of teas commonly consumed in the United Kingdom. J. Agric. Food Chem. 50: 565-570.

Kim, Y., Goodner, K.L., Park, J.D., Choi, J. & Talcott, S.T. 2011. Changes in antioxidant phytocemicals and volatile composition of Camellia sinensis by oxidation during tea fermentation. Food Chemistry 129: 1331-1342.

Kwon, Y.I., Apostolidis, E. & Shetty, K. 2008. Inhibitory potential of wine and tea against alpha-amylase and alpha-glucosidase for management of hyperglycemia linked to type 2 diabetes. J. Food Biochem. 32: 15-31.

Lee, M.J., Maliakal, P., Chen, L., Meng, X., Bondoc, F.Y., Prabhu, S., Lambert, G., Mohr, S. & Yang, C.S. 2002. Pharmacokinetics of tea catechins after ingestion of green tea and (–)-epigallocatechin-3-gallate by humans: Formation of different metabolites and individual variability. Cancer Epidemiol., Biomarkers Prev. 10: 1025-1032.

Liang, H., Liang, Y., Dong, J., Lu, J., Xu, H. & Wang, H. 2007. Decaffeination of fresh green tea leaf (Camellia sinensis) by hot water treatment. Food Chemistry 101: 1451-1456.

Lilian, U.T. 1994. Potential health benefits and problems associated with antinutrients in foods. Food Research International 93: 963-969.

Lin, Y., Tsai, Y., Tsay, J. & Lin, J. 2003. Factors affecting the levels of tea polyphenols and caffeine in tea leaves. J. Agric. Food Chem. 51: 1864-1873.

Liu, X., Zho, M., Wang, J., Yang, B. & Jiang, Y. 2008. Antioxidant activity of methanolic extract of emblica fruit (Phyllanthus emblica L.) from six regions in China. Journal of Food Composition and Analysis 21(3): 219-228.

Mcdougall, G.J. & Stewart, D. 2005. The inhibitory effects of berry polyphenols on digestive enzymes. Biofactors 23: 189-195.

Naczk, M. & Shahidi, F. 2006. Phenolics in cereals, fruits and vegetables: Occurance, extraction and analysis. Journal of Pharmaceutical and Biomedical Analysis 41: 1523-1542.

Naldi, M., Fiori, J., Gotti, R., Pe’ riat, A., Veuthey, J.L., Guillarme, D. & Andrisano, V. 2014. UHPLC determination of catechins for the quality control of green tea. Journal of Pharmaceutical and Biomedical Analysis 88: 307-314.

Nwuha, V., Nakajima, M., Tong, J. & Ichikawa, S. 1999. Solubility study of green tea extracts in pure solvents and edible oils. J. Food Eng. 40: 161-165.

Pan, X., Niu, G. & Liu, H. 2003. Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves. Chemical Engineering and Processing 42(2): 129-133

Pinelo, M., DelFabbro, P., Marzocco, L., Nunez, M.J. & Vicoli, M.C. 2005. Optimization of continuous phenol extraction from vitis vinifera byproducts. Food Chem. 92: 109-117.

Rhabasa-Lhoret, R. & Chiasson, J.L. 2004. α-Glucosidase inhibitors, In International Textbook of Diabetes mellitus, vol. 1, 3rd ed, edited by Defronzo, R.A., Ferrannini, E., Keen, H. & Zimmet, P. U.K. John Wiley & Sons Ltd. pp. 901-914.

Rohn, S., Rawel, H.M. & Kroll, J. 2002. Inhibitory effects of plant phenols on the activity of selected enzymes. Journal of Agricultural Food Chemistry 50: 3566-3571.

Rusak, G., Komes, D., Likic´, S., Horzic´, D. & Kovac, M. 2008. Phenolic content and antioxidative capacity of green and white tea extracts depending on extraction conditions and the solvent used. Food Chemistry 110: 852-858.

Saito, S., Okamoto, Y. & Kawabata, J. 2004. Effect of alcoholic solvents on antiradical abilities of protocatechuic acid and its alkyl esters. Bioscience Biotechnology and Biochemistry 68: 1221-1227.

Sanchez-Moreno, C., Larrauri, J.A. & Saura-Calixto, F. 1998. A procedure to measure the antiradical efficiency of polyphenols. Journal of the Science of Food and Agriculture 76: 270-276.

Siddhuraju, P. & Becker, K.  2003. Antioxidant properties of various extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera lam.) leaves. J. Agric. Food Chem. 51: 2144-2155.

Skerget, M., Kotnik, P., Hadolin, M., Hras, A.R., Simonic, M. & Knez, Z. 2005. Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Journal of Food Chemistry 89: 191-198.

Sroka, Z. & Cisowski, W. 2003. Hydrogen peroxide scavenging, antioxidant and antiradical activity of some phenolic acids. Food and Chemical Toxicology 41: 753-758.

Szymczycha-Madeja, A., Welna, M. & Pohl, P. 2015. Determination of essential and non-essential elements in green and black teas by FAAS and ICP OES simplified– multivariate classification of different tea products. Microchemical Journal 121: 122-129.

Timell, T.E., Glaudemans, C.P.J. & Currie, A.L. 1956. Spectrophotometric methods for determination of sugars. Anal. Chem. 28: 1916-1920.

Tresserra-Rimbau, A., Rimm, E.B., Medina-Remon, A., Martinez-Gonzalez, M.A., de la Torre, R., Corella, D., Salas-Salvado, J., Gomez-Gracia, E., Lapetra, J., Aros, F., Fiol, M., Ros, E., Serra-Majem, L., Pinto, X., Saez, G.T., Basora, J., Sorli, J.V., Martinez, J. A., Vinyoles, E., Ruiz Gutierrez, V., Estruch, R. & Lamuela-Raventos, R.M. 2014. Inverse association between habitual polyphenolintake and incidence of cardiovascular events in the PREDIMED study. Nutr. Metab. Cardiovasc. Dis. 24(6): 639-647.

Turkmen, N., Sari, F. & Velioglu, Y.S. 2006. Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Folin-Ciocaltue methods. Food Chemistry 99: 835-841.

Uchenna, J.U., Selena, A., Adam, K., James, T.L. & Edward, J.K. 2010. White and green teas (Camellia sinensis var. sinensis): Variation in phenolic, methylxanthine, and antioxidant profiles. Journal of Food Science 75: 66-78.

Vrhovsek, U., Rigo, A., Tonon, D. & Mattivi, F. 2004. Quantitation of polyphenols in different apple varieties  Journal of Agricultural and Food Chemistry 52: 6532-6538.

Yen, G.C. & Chen, H.Y. 1995. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem. 43: 27-32.

Zhang, J. & Kashket, S. 1997. Inhibition of salivary amylase by black and green teas and their effects on the intra-oral hydrolysis of starch. Caries Res. 32: 233-238.

Zhishen, J., Mengcheng, T. & Jianming, T. 1999. The determination of flavonoid content in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64: 555-559.

Zimmermann, B.F. & Gleichenhagen, M. 2011. The effect of ascorbic acid, citric acid and low pH on the extraction of green tea: How to get most out of it. Food Chemistry 124: 1543-1548.

 

*Corresponding author; email: sapina@usm.my

 

 

previous