Sains Malaysiana 47(8)(2018): 1897–1906

http://dx.doi.org/10.17576/jsm-2018-4708-31

 

Behaviour of Walls Constructed using Kelempayan (Neolamarckia cadamba)

Wood Wool Reinforced Cement Board

(Tingkah Laku Dinding yang Dibina menggunakan Papan Simen Bertetulang

Tatal Kayu Kelempayaan (Neolamarckia cadamba)

ZAKIAH AHMAD1, LUM WEI CHEN1*, LEE SENG HUA2 & WAN FATIHAH WAN MOHD MAHYIDDIN1

 

1Institute for Infrastructure Engineering and Sustainable Management (IIESM), Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia

 

2Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

Received: 24 January 2018/Accepted: 7 April 2018

 

 

ABSTRACT

This research investigated the behaviour of walls produced from wood wool cement board (WWCB) which were reinforced with a lesser known commercial timber, Kelempayan, when subjected to compression load. Kelempayan timbers were shredded into wood wool and used as reinforcement agent in this study. WWCB having dimensions of 600 × 2400 × 50 mm and 600 × 2400 × 75 mm, respectively, were fabricated. Properties of the WWCB samples, namely swelling, bending and compression strength were tested. 75 mm WWCB has higher fracture toughness but lower strength compared to 50 mm WWCB. Four types of wall systems with different type of configuration were produced and the test results were compared focusing on their value of ultimate load and failure mode. Walls that constructed without application of link and plaster displayed the poorest performance. Plastered and linked wall had the highest ultimate load and comparable with other load bearing walls. The results suggested that walls constructed using WWCB reinforced with Kelempayan wood wool are suitable for load bearing as they exhibited comparable properties when compared to the other load bearing walls such as masonry and straw bale wall.

 

Keywords: Failure; Kelempayan; reinforced cement; wall system; wood wool

 

ABSTRAK

Penyelidikan ini mengkaji kelakuan dinding yang dihasilkan daripada papan simen tatal kayu (WWCB) yang diperkuat dengan kayu komersial yang kurang dikenali, iaitu kayu Kelempayan, apabila dikenakan daya kompresi. Kayu Kelempayan dipotong menjadi tatal kayu dan digunakan sebagai agen pengukuhan dalam kajian ini. WWCB yang berdimensi 600 × 2400 × 50 mm dan 600 × 2400 × 75 mm telah dihasilkan. Ciri seperti perubahan dimensi, kekuatan lenturan dan mampatan WWCB telah diuji. 75 mm WWCB mempunyai ketangguhan retak yang lebih tinggi tetapi kekuatan yang lebih rendah berbanding dengan 50 mm WWCB. Empat jenis sistem dinding dengan konfigurasi yang berbeza telah dihasilkan dan keputusan ujian dibandingkan dengan penilaian nilai beban muktamad dan mod kegagalan. Dinding yang dibina tanpa penggunaan pautan dan plaster mempamerkan prestasi terendah. Dinding yang mempunyai pautan dan plaster mempunyai beban muktamad tertinggi. Berdasarkan keputusan yang didapati, ia menunjukkan bahawa dinding yang dibina menggunakan WWCB yang diperkuatkan dengan tatal kayu Kelempayan adalah sesuai untuk penanggulan beban kerana ia mempamerkan sifat yang setanding berbanding dengan dinding penanggulan beban yang lain seperti tembok batu dan dinding jerami.

 

Kata kunci: Kegagalan; Kelempayan; simen diperkukuh; sistem dindang; tatal kayu

REFERENCES

Al Rim, K., Ledhem, A., Douzane, O., Dheilly, R.M. & Queneudec, M. 1999. Influence of the proportion of wood on the thermal and mechanical performances of clay-cement-wood composites. Cement and Concrete Composites 21(4): 269-276.

Ashori, A., Tabarsa, T., Azizi, K. & Mirzabeygi, R. 2011. Wood-wool cement board using mixture of eucalypt and poplar. Industrial Crops and Products 34(1): 1146-1149.

Del Menezzi, C.H.S., De Castro, V.G. & De Souza, M.R. 2007. Production and properties of a medium density woodecement boards produced with oriented strands and silica fume. Maderas: Cienc. Tecnol. 9(2): 105-115.

Faine, M. & Zhang, J. 2001. A pilot study examining the strength, compressibility and serviceability of rendered straw bale walls for two storey load bearing construction. In Proceedings of First International Conference on Ecological Building Structure. California, United States. pp. 1-14.

Fyrbort, S., Mauritz, R., Teischinger, A. & Muller, U. 2008. Cement bonded composites - A mechanical review. BioResources 3(2): 602-626.

Goverse, T., Hekkert, M.P., Groenewegen, P., Worrell, E. & Smits, R.E. 2001. Wood innovation in the residential construction sector: Opportunities and constraints. Resources, Conservation and Recycling 34(1): 53-74.

Himasree, P.R., Ganesan, N. & Indira, P.V. 2017. Bamboo as a substitute for steel in reinforced concrete wall panels. IOP Conference Series: Earth and Environmental Science 80: 012041.

Hossain, K.M., Mol, L.K. & Anwar, M.S. 2015. Axial load behaviour of pierced profiled composite walls with strength enhancement devices. Journal of Constructional Steel Research 110: 48-64.

King, B. 2003. Load-bearing straw bale structures - a summary of testing and experience to date. http://www.strawbalebuilding. ca/pdf/Load-Bearing_SB_Const.pdf. Accessed on 24 December 2017.

Lai, P.S., Ho, W.S. & Pang, S.L. 2013. Development, characterization, and cross-species transferability of expressed sequence tag-simple sequence repeat (EST-SSR) markers derived from Kelempayan tree transcriptome. Biotechnology 12(6): 225-235.

Lam, F., Kadla, J.F., Chang, F.C. & Oudjehane, A. 1997. Development of MPB wood cement and MPB wood plastics. In Proceedings of the 18th Risø International Symposium on Materials Science: Polymeric Composites - Expanding the Limit. Risø, Denmark.

Lee, S.H., Ashaari, Z., Lum, W.C., H’ng, P.S., Tan, L.P., Chow, M.J., Chai, E.W. & Chin, K.L. 2015. Properties of particleboard with oil palm trunk as core layer in comparison to three-layer rubberwood particleboard. Journal of Oil Palm Research 27(1): 67-74.

Lima Júnior, H.C., Willrich, F.L. & Barbosa, N.P. 2003. Structural behavior of load bearing brick walls of soil-cement with the addition of ground ceramic waste. Revista Brasileira de Engenharia Agrícola e Ambiental 7(3): 552-558.

Manalo, A. 2013. Structural behaviour of prefabricated composite wall system made from rigid polyurethane foam and magnesium oxide board. Construction and Building Materials 41: 642-653.

Masjuki, S.A., Mohammed, B.S. & Al-Mattarneh, H.M.A. 2008. Hybrid composite wall system by using local waste: panel of cement bonded wood in filled with papercrete. International Conference on Construction and Building Technology 22: 239-250.

Ministry of Plantation Industries and Commodities. 2005. Forest Plantation Programme. http://kppk.gov.my/mpic/images/pdf/ overviewladang.pdf. Accessed on 1 April 2018.

Onuaguluchi, O. & Banthia, N. 2016. Plant-based natural fibre reinforced cement composites: A review. Cement and Concrete Composites 68: 96-108.

Pablo, A.A. 1989. Wood cement boards from wood wastes and fast-growing plantation species for lowcost housing. The Philippine Lumberman 35: 8-53.

Seangatith, S. 2005. Short-term behaviors and design equations of mortarless reinforced concrete masonry walls. Suranaree Journal of Science and Technology 12(3): 178-192.

Sofi, F., Macchi, C., Abbate, R., Gensini, G.F. & Casini, A. 2014. Mediterranean diet and health status: An updated meta-analysis and a proposal for a literature-based adherence score. Public Health Nutrition 17(12): 2769-2782.

Walker, P. 2004. Compression Load Testing Straw Bale Walls. Department Architecture & Civil Engineering, University of Bath, Bath.

Wolfe, R.W. & Gjinolli, A. 1999. Durability and strength of cement-bonded wood particle composites made from construction waste. Forest Products Journal 49(2): 24-31.

Wyborn, F. 2013. Manufacture of low-cost wood-cement composites in the Philippines using plantation-grown Australian tree species. Australian Centre for International Agricultural Research (ACIAR), Canberra, Australia.

Zaini, I.A.R. 2010. Forest plantation programme in Malaysia - The way forward. In Proceedings of the Seminar and Workshop on Improved utilization of Tropical Plantation Timbers, Kepong, Malaysia. pp. 23-29.

 

 

*Corresponding author; email: lumweichen@outlook.com

 

 

 

 

previous