Sains Malaysiana 48(7)(2019): 1409–1416

http://dx.doi.org/10.17576/jsm-2019-4807-09

 

A Hydrogen Peroxide Biosensor from Horseradish peroxidase Immobilization onto Acrylic Microspheres

(Biosensor Hidrogen Peroksida Berasaskan Pemegunan Peroksidase Lobak Putih pada Mikrosfera Akrilik)

EDA YUHANA ARIFFIN1, NIK NURHANAN NIK MANSOR1, EKA SAFITRI2, LEE YOOK HENG1 & NURUL IZZATY HASSAN1*

 

1Centre for Advanced Materials and Renewable Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Department of Chemistry, Faculty of Mathematics and Natural Sciences, Syiah Kuala University (USK), Darussalam-Banda Acheh 23111, Indonesia

 

Received: 19 November 2018/Accepted: 8 April 2019

 

ABSTRACT

The sensitive and rapid detection of hydrogen peroxide is very important in the areas of clinical and environmental analyses. A sensitive and selective Horseradish peroxidase (HRP)-hydrogen peroxide (H2O2) biosensor was developed based on acrylic microspheres. Hydrophobic poly(n-butyl acrylate-N-acryloxysuccinimide) [poly(nBA-NAS)] microspheres were synthesized using photopolymerization in an emulsion to form an enzyme immobilization matrix. The HRP enzyme was covalently immobilized onto the acrylic microspheres via the succinimide functionality. Field emission scanning electron microscope (FESEM) has been utilized to characterize the screen-printed carbon paste electrode (SPE) constructed from enzyme conjugated acrylic microspheres and gold nanoparticles (AuNPs) composite (HRP/nBA-NAS/AuNPs/SPE). Differential pulse voltammetry was used to assess the biosensor performance. The linear response range of the hydrogen peroxide biosensor obtained was from 1.0 × 10-2 to 1.0 × 10-10 M (R2 = 0.99) with the limit of detection (LOD) approximately at 1.0 × 10-10 M. This is an improvement over many hydrogen peroxide biosensors reported so far. Such improvement may be attributed to the large surface area provided by the acrylic microspheres as a matrix for immobilization of the HRP enzyme.

 

Keywords: Acrylic microsphere; biosensor; Horseradish peroxidase; hydrogen peroxide

 

ABSTRAK

Pengesanan hidrogen peroksida yang sensitif dan cepat adalah sangat penting dalam bidang analisis persekitaran dan klinikal. Biosensor hidrogen peroksida (H2O2)-peroksidase lobak putih (HRP) yang sensitif dan memilih telah dibangunkan berasaskan mikrosfera akrilik. Mikrosfera hidrofobik poli(n-butil akrilat-N-akriloksuksinimida)[poli(nBA-NAS)] disintesis dengan menggunakan proses fotopempolimeran dalam bentuk emulsi dan ia bertindak sebagai matriks pemegun enzim. Enzim HRP dipegunkan secara kovalen pada mikrosfera akrilik melalui pengfungsian suksinimida. Mikroskop elektron imbasan pancaran medan (FESEM) telah digunakan bagi mencirikan elektrod karbon permukaan bercetak (SPE) yang dibina daripada komposit mikrosfera akrilik berkonjugat enzim dan nanosfera emas (AuNPs) (HRP/nBA-NAS/AuNPs/SPE). Voltametri denyutan pembezaan digunakan untuk penilaian prestasi biosensor. Julat keupayaan linear bagi biosensor hidrogen peroksida diperoleh daripada 1.0 × 10-2 hingga 1.0 × 10-10 M (R2 = 0.99) dengan had pengesanan (LOD) ditemui pada 1 × 10-10 M. Ini merupakan penambahbaikan berbanding biosensor hidrogen peroksida yang telah terlebih dahulu dilaporkan. Penambahbaikan ini mungkin ditentukan oleh luas permukaan yang besar yang disediakan oleh mikrosfera akrilik sebagai tapak pemegunan enzim HRP.

 

Kata kunci: Biosensor; hidrogen peroksida; mikrosfera akrilik; peroksidase lobak putih

REFERENCES

Ansari, A.A., Solanki, P.R. & Malhotra, B.D. 2009. Hydrogen peroxide sensor based on horseradish peroxidase immobilized nanostructures cerium oxide film. Journal of Biotechnology 142: 179-184.

Ariffin, E.Y., Lee, Y.H., Futra, D., Tan, L.L., Karim, N.H.A., Ibrahim, N.N.N. & Ahmad, A. 2018. An ultrasensitive hollow-silica-based biosensor for pathogenic Escherichia coli DNA detection. Analytical and Bioanalytical Chemistry 410(9): 2363-2375.

Cao, Z., Jiang, X., Xie, Q. & Yao, S. 2008. A third-generation hydrogen peroxide biosensor based on horseradish peroxidase immobilized in a tetrathiafulvalene-tetracyanoquinodimethane/multiwalled carbon nanotubes film. Biosensors and Bioelectronics 24: 222-227.

Chen, S., Yuan, R., Chai, Y., Xu, L., Wang, N., Li, X. & Zhang, L. 2006. Amperometric hydrogen peroxide biosensor based on the immobilization of horseradish peroxide (HRP) on the layer-by-layer assembly films of gold colloidal nanoparticles and toluidine blue. Electroanalysis 18(5): 471-477.

Ciszewski, A. & Gorski, Z. 1995. Stripping measurements of hydrogen peroxide based on biocatalytic accumulation at a horseradish peroxidase/ferrocene/carbon paste electrode. Electroanalysis 7(5): 495-497.

Dou, Y., Haswell, S., Greenman, J. & Wadhawan, J. 2009. Immobilized antraquinone for redox mediation of horseradish peroxidase for hydrogen peroxide sensing. Electrochemistry Communications 11: 1976-1981.

Fang, Z-H., Lu, L-M., Zhang, X-B., Li, H-B., Yang, B., Shen, G-L. & Yu, R-Q. 2011. A third-generation hydrogen peroxide biosensor based on horseradish peroxidase immobilized in carbon nanotubes/SBA/15 film. Electroanalysis 23(10): 2415-2420.

Garjonyte, R., Yigzaw, Y., Meskys, R., Malinauskas, A. & Gorton, L. 2001. Prussian Blue- and lactate oxidase- based amperometric biosensor for lactic acid. Sensors and Actuators B 79: 33-38.

Guilbault, G. & Lubrano, G. 1973. An enzyme electrode for the amperometric determination of glucose. Analytica Chimica Acta64: 439-455.

Hirst, N.A., Hazelwood, L.D., Jayne, D.G. & Millner, P.A. 2013. An amperometric lactate biosensor using H2O2 reduction via a Prussian Blue impregnated poly(ethyleneimine)surface on screen printed carbon electrodes to detect anastomotic leak and sepsis. Sensors and Actuators B 186: 674-680.

Lei, C., Zhang, Z., Liu, H., Kong, J. & Deng, J. 1996. Biosensoring of hydrogen peroxidase using new methtlene blue N incorporated in a montmorillonite-modified horseradish peroxidase immobilization matrix as an electron shuttle. Analytica Chimica Acta332: 73-81.

Lei, C-X., Hu, S-Q., Gao, N., Shen, G-L. & Yu, R-Q. 2004. An amperometric hydrogen peroxide biosensor based on immobilizing horseradish peroxidase to a nano-Au monolayer supported by sol-gel derived carbon ceramic electrode. Bioelectrochemistry 65: 33-39.

Lin, X-Q., Chen, J. & Chen, Z-H. 2000. Amperometric biosensor for hydrogen peroxide based on immobilization of horseradish peroxidase on methylene blue modified graphite electrode. Electroanalysis 12(4): 306-310.

Radi, A-E., Lates, V. & Marty, J-L. 2008. Mediatorless hydrogen peroxide biosensor based on horseradish peroxidase immobilized on 4-carboxyphenyl film electrografted on gold electrode. Electroanalysis 20(23): 2557-2562.

Ricci, F., Amine, A., Palleschi, G. & Moscone, D. 2003. Prussian Blue based screen printed biosensors with improved characteristics of long-term lifetime and pH stability. Biosensors and Bioelectronics 18: 165-174.

Senel, M., Cevik, E. & Abasiyanik, M.F. 2010. Amperometric hydrogen peroxide biosensor based on covalent immobilization of horseradish peroxidase on ferrocene containing polymeric mediator. Sensors and Actuators B 145: 444-450.

Shourian, M. & Ghourchian, H. 2010. Biosensing improvement of horseradish peroxidase towards hydrogen peroxide upon modifying the accessible lysines. Sensors and Actuators B 145: 607-612.

Ulianas, A., Nurlely, Y., Lee, Y.H. & Tan, L.L. 2018. Synthesis and optimization of acrylic N-acryloxysuccinimide copolymer microspheres. International Journal on Advanced Science 8(3): 780-784.

Ulianas, A., Lee, Y.H., Ahmad, M., Lau, H.Y., Ishak, Z. & Tan, L.L. 2014. A regenerable screen-printed DNA biosensor based on acrylic microsphere-gold nanoparticle composite for genetically modified soybean determination. Sensors and Actuators B 190: 694-701.

Ulianas, A., Lee, Y.H., Hanifah, S.A. & Tan, L.L. 2012. An electrochemical DNA microbiosensor based on succinimide-modified acrylic microspheres. Sensors 12(5): 5445-5460.

Ulianas, A., Lee, Y.H. & Ahmad, M. 2011. A biosensor for urea from succinimide-modified acrylic microspheres based on reflectance transduction. Sensors 11(9): 8323-8338.

Villalonga, R., Diez, P., Yanez-Sedeno, P. & Pingarron, J.M. 2011. Wiring horseradish peroxidase on gold nanoparticles-based nanostructured polymeric network for the construction of mediatorless hydrogen peroxide biosensor. Electrochimica Acta56: 4672-4677.

Wang, J. 2001. Glucose biosensors: 40 years of advances and challenges. Electroanalysis 12: 983-988.

Wang, L. & Wang, E. 2004. A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized on colloidal Au modified ITO electrode. Electrochemistry Communications 6: 225-229.

Xu, J-J., Zhou, D-M. & Chen, H-Y. 1998. A reagentless hydrogen peroxide biosensor based on the coimmobilization of thionine and horseradish peroxidase by their cross-linking with glutaraldehyde on glassy carbon electrode. Electroanalysis 10(10): 713-716.

Yu, D., Blankert, B., Bodoki, E., Bollo, S., Vir’e, J-C., Sandulescu, R., Nomura, A. & Kauffmann, J-M. 2006. Amperometric biosensor based on horseradish peroxidase-immobilised magnetic microparticles. Sensors and Actuators B 133: 749-754.

Zhang, Y.L., Jin, S-Z., Zhang, C-X. & Shen, H-X. 2001. Studies on electrocatalytical kinetic behaviour of horseradish peroxide and assay for hydrogen peroxide at salt bridge supported bilayer lipid membrane. Electroanalysis 13(2): 137-142.

Zhang, D., Zhao, H., Fan, Z., Li, M., Du, P., Liu, C., Li, Y., Li, H. & Cao, H. 2015. A highly sensitive and selective hydrogen peroxide biosensor based on gold nanoparticles and three-dimensional porous carbonized chicken eggshell membrane. PLoS ONE 10(6): e0130156.

 

*Corresponding author; email: drizz@ukm.edu.my

 

 

 

previous