Sains Malaysiana 49(11)(2020): 2625-2635

http://dx.doi.org/10.17576/jsm-2020-4911-02

 

Impact of N-Methyl-2-Pyrrolidone in Monoethanolamine Solution to the CO2 Absorption in Packed Column: Analysis via Mathematical Modeling

(Kesan N-Metil-2-Pirolidon dalam Larutan Monoetanolamina pada Penyerapan CO2 dalam Kolum Pek: Analisis melalui Pemodelan Matematik)

 

L.S. TAN1*, A.M. SHARIFF2, W.H. TAY2, K.K LAU2, T. TSUJI1 & N.A.H. HAIRUL3,4

 

1Department of Chemical Process Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, 54100 Kuala Lumpur, Malaysia

 

2CO2 Research Centre, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia

 

3School of Bioprocess Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis Indera Kayangan, Malaysia

 

4Center of Excellent for Biomass Utilization, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, 02600 Arau, Perlis Indera Kayangan, Malaysia

 

Received: 22 August 2019/Accepted: 30 May 2020

 

ABSTRACT

This work investigates the reason behind the change of CO2 absorption behaviour exhibited by monoethanolamine (MEA) solution via mathematical modeling analysis when physical absorbent, i.e. n-methyl-2-pyrrolidone (NMP), was added into the solution. The mathematical modeling included the heat model using time resolved numerical method. Based on the results, it was found that lower CO2 removal performance with the addition of NMP into MEA solution at pressure of 0.1 MPa was mainly due to the lower temperature rise along the column, which resulted in lower reaction rate. However, at 3 and 5 MPa pressure conditions, the high physical absorption capability contributed by the presence of NMP in MEA hybrid solution enhanced the CO2 absorption performance of MEA hybrid solution significantly. As such, temperature rise of solution was identified as the dominating factor affecting the performance of the hybrid solvent. The reaction rate of MEA was not affected by the addition of physical solvent. This finding shed crucial insight on the behaviour MEA-NMP hybrid solution which can be applied during scale-up of the process.

 

Keywords: CO2 absorption; elevated pressure; hybrid solvent; packed column; physical absorbent

 

ABSTRAK

Kajian ini mengkaji penyebab di sebalik perubahan prestasi penyerapan CO2 yang ditunjukkan oleh larutan monoetanolamina (MEA) melalui analisis pemodelan matematik apabila penyerap fizikal, iaitu n-metil-2-pirolidon (NMP), dimasukkan ke dalam larutan. Pemodelan matematik tersebut telah memasukkan model haba dengan menggunakan kaedah penyesaian waktu berangka. Berdasarkan keputusan tersebut, didapati bahawa prestasi penyingkiran CO2 yang lebih rendah dengan penambahan NMP ke dalam larutan MEA pada tekanan 0.1 MPa yang terutamanya disebabkan oleh kenaikan suhu yang lebih rendah di sepanjang turus, yang mengakibatkan kadar tindak balas yang lebih rendah. Walau bagaimanapun, pada keadaan tekanan 3 dan 5 MPa, keupayaan penyerapan fizikal adalah tinggi yang disumbangkan oleh kehadiran NMP dalam larutan hibrid MEA telah meningkatkan prestasi penyerapan CO2 larutan hibrid MEA dengan ketara. Oleh itu, peningkatan suhu larutan telah dikenal pasti sebagai faktor yang mempengaruhi prestasi pelarut hibrid. Kadar tindak balas MEA tidak dipengaruhi oleh penambahan pelarut fizikal. Penemuan ini membawa kepada pemahaman yang penting terhadap prestasi larutan hibrid MEA-NMP yang boleh digunakan semasa menaik-skala proses tersebut.

 

Kata kunci: Pelarut hibrid; penyerapan CO2; penyerap fizikal; tekanan tinggi; turus terpadat

 

REFERENCES

Aouini, I., Alain, L., Lionel, E. & Soazic, M. 2014. Pilot plant studies for CO2 capture from waste incinerator flue gas using mea based solvent. Oil Gas Sci. Technol. - Rev. IFP Energies Nouvelles 69(6): 1091-1104.

Arcis, H., Ballerat-Busserolles, K., Rodier, L. & Coxam, J.Y. 2011. Enthalpy of solution of carbon dioxide in aqueous solutions of monoethanolamine at temperatures of 322.5 K and 372.9 K and pressures up to 5 MPa. Journal of Chemical & Engineering Data 56(8): 3351-3362.

Asendrych, D. & Paweł, N. 2017. Numerical study of the CO2 absorber performance subjected to the varying amine solvent and flue gas loads. Chemical Engineering Communications 204(5): 580-590.

Bailey, D.W. & Feron, P.H.M. 2005. Capture post-combustion. Oil & Gas Science and Technology 60(3): 461-474.

Blanco, A., Alicia, G-A., Diego, G.D. & José, M.N. 2012. Density, speed of sound, and viscosity of n-methyl-2-pyrrolidone + ethanolamine + water from T = (293.15 to 323.15) K. Journal of Chemical & Engineering Data 57(11): 3136-3141.

Chakma, A. 1999. Formulated solvents: New opportunities for energy efficient separation of acid gases. Energy Sources 21(1-2): 51-62.

Dabrowski, N., Christoph, W. & Lothar, R.O. 2009. Purification of natural gases with high CO2 content using gas hydrates. Energy & Fuels 23(11): 5603-5610.

Dawodu, O.F. & Meisen, A. 1994. Solubility of carbon dioxide in aqueous mixture of alkanolamines. Journal of Chemical & Engineering Data 39(3): 548-552.

Descamps, C., Bouallou, C. & Kanniche, M. 2008. Efficiency of an integrated gasification combined cycle (IGCC) power plant including CO2 removal.  Energy 33(6): 874-881.

Dong, X., Pi, G., Ma, Z. & Dong, C. 2017. The reform of the natural gas industry in the PR of China. Renewable and Sustainable Energy Reviews 73: 582-593.

Han, J., Jin, J., Eimer, D.A. & Melaaen, M.C. 2012. Density of water (1) + monoethanolamine (2) + CO2 (3) from (298.15 to 413.15) K and surface tension of water (1) + monoethanolamine (2) from (303.15 to 333.15) K. Journal of Chemical & Engineering Data 57(4): 1095-1103.

Haroun, Y. & Raynal, L. 2016. Use of computational fluid dynamics for absorption packed column design. Oil Gas Sci. Technol. - Rev. IFP Energies Nouvelles 71(3): 43.

Huang, W., Mi, Y., Li, Y. & Zheng, D. 2015. An aprotic polar solvent, diglyme, combined with monoethanolamine to form CO2 capture material: Solubility measurement, model correlation, and effect evaluation. Industrial & Engineering Chemistry Research 54(13): 3430-3437.

Jusoh, N., Lau, K.K., Yeong, Y.F. & Shariff, A.M. 2016. Bulk CO2/CH4 separation for offshore operating conditions using membrane process. Sains Malaysiana 45(11): 1707-1714.

Kahl, H., Wadewitz, T. & Winkelmann, J. 2003. Surface tension of pure liquids and binary liquid mixtures. Journal of Chemical & Engineering Data 48(3): 580-586.

Kohl, A.L. & Nielsen, R.B. 1997. Gas Purification. 5th ed. Texas: Gulf Publishing Company.

Leites, I.L. 1998. Thermodynamics of CO2 solubility in mixtures monoethanolamine with organic solvents and water and commercial experience of energy saving gas purification technology. Energy Conversion and Management 39(16-18): 1665-1674.

Licciulli, A., Maurizio, N., Stefania, D.S., Carlo, T. & Sanosh, K.P. 2017. CO2 capture on amine impregnated mesoporous alumina-silica mixed oxide spheres. Fuel Processing Technology 166: 202-208.

Majid, S. 2017. Rate based modeling of CO2 absorption into piperazine- activated aqueous n-methyldiethanolamine solution: Kinetic and mass transfer analysis. International Journal of Chemical Kinetics 49(9): 690-708.

McCann, N., Marcel, M. & Moetaz, A. 2008. Simulation of enthalpy and capacity of CO2 absorption by aqueous amine systems. Industrial & Engineering Chemistry Research 47(6): 2002-2009.

Mundhwa, M., Elmahmudi, S., Maham, Y. & Henni, A. 2009. Molar heat capacity of aqueous sulfolane, 4-formylmorpholine, 1-methyl-2-pyrrolidinone, and triethylene glycol dimethyl ether solutions from (303.15 to 353.15) K. Journal of Chemical & Engineering Data 54(10): 2895-2901.

Florentino, M-G., Esther, R-L. & Arturo, T. 1992. Solubility of carbon dioxide in binary mixtures of N-methylpyrrolidone with alkanolamines. Journal of Chemical & Engineering Data 37(1): 4-7.

Florentino, M-G., Ascencion, R-M. & Arturo, T. 1988. Solubilities of carbon dioxide and hydrogen sulfide in propylene carbonate, N-methylpyrrolidone and sulfolane. Fluid Phase Equilibria 44(1): 105-115.

Neishabori, S., Rasoul, F.R. & Sahram, S. 2017. Adsorption of carbon dioxide, nitrogen and methane on modified titanosilicate type molecular sieves. Journal of Natural Gas Science and Engineering 46(Supplement C): 730-737.

Penttilä, A., Claudia, D., Petri, U. & Ville, A. 2011. The Henry's law constant of N2O and CO2 in aqueous binary and ternary amine solutions (MEA, DEA, DIPA, MDEA, and AMP). Fluid Phase Equilibria 311: 59-66.

Peters, J.C. 2017. Natural gas and spillover from the US clean power plan into the Paris agreement. Energy Policy 106: 41-47.

Rajasingam, R., Liwan, L.Q., Tuan, P. & Frank, P.L. 2004. Solubility of carbon dioxide in dimethylsulfoxide and N-methyl-2-pyrrolidone at elevated pressure. The Journal of Supercritical Fluids 31(3): 227-234.

Rocha, J.A., Jose, L.B. & James, R.F. 1996. Distillation columns containing structured packings:  A comprehensive model for their performance. 2. mass-transfer model. Industrial & Engineering Chemistry Research 35(5): 1660-1667.

Shi, M.G. & Mersmann, A. 1985. Effective surface area in packed column. German Chemical Engineering 8: 87-96.

Song, C., Liu, Q., Ji, N., Deng, S., Zhao, J. & Kitamura, Y. 2017. Advanced cryogenic CO2 capture process based on stirling coolers by heat integration. Applied Thermal Engineering 114: 887-895.

Sreedhar, I., Nahar, T., Venugopal, A. & Srinivas, B. 2017. Carbon capture by absorption - path covered and ahead. Renewable and Sustainable Energy Reviews 76: 1080-1107.

Tan, L.S., Shariff, A.M., Tay, W.H., Lau, K.K. & Halim, H.N.A. 2016. Integrated mathematical modeling for prediction of rich CO2 absorption in structured packed column at elevated pressure conditions. Journal of Natural Gas Science and Engineering 28: 737-745.

Tan, L.S., Shariff, A.M., Lau, K.K. & Bustam M.A. 2015. Impact of high pressure on high concentration carbon dioxide capture from natural gas by monoethanolamine/n-methyl-2-pyrrolidone solvent in absorption packed column. International Journal of Greenhouse Gas Control 34: 25-30.

Vaidya, P.D. & Mahajani, V.V. 2005. Kinetics of the reaction of CO2 with aqueous formulated solution containing monoethanolamine, n-methyl-2-pyrrolidone, and diethylene glycol. Industrial & Engineering Chemistry Research 44(6): 1868-1873.

Weiland, R.H., Dingman, J.C., Cronin, D.B. & Browning, G.J. 1998. Density and viscosity of some partially carbonated aqueous alkanolamine solutions and their blends. Journal of Chemical & Engineering Data 43(3): 378-382.

Wong, M.K., Bustam, M.A. & Shariff, A.M. 2016. In situ measurement of physical solubility of carbon dioxide in loaded aqueous monoethanolamine by Raman spectroscopy. Journal of Natural Gas Science and Engineering 36(Part A): 305-313.

Yuan, Y. & Rochelle, G.T. 2018. CO2 absorption rate in semi-aqueous monoethanolamine. Chemical Engineering Science 182: 56-66.

Zhang, T., Yu, Y. & Zhang, Z. 2018. Effects of non-aqueous solvents on CO2 absorption in monoethanolamine: ab initio calculations. Molecular Simulation 44(10): 815-825.

 

*Corresponding author; email: tan.liansee@utm.my

 

   

 

 

previous