Sains Malaysiana 49(11)(2020): 2689-2698

http://dx.doi.org/10.17576/jsm-2020-4911-08

 

Synthesis of Hydroxylated Polyisoprene-Graft-Polylactide Copolymer

(Sintesis Kopolimer Poliisoprena Terhidroksil-Cangkuk-Polilaktida)

 

BENJAMIN NEOH DI-SHEN1, SITI FAIRUS MOHD YUSOFF1,2 TAKENO AKIYOSHI3, TAKAHASHI SHINYA3 & FARAH HANNAN ANUAR1,2*

 

1Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Polymer Research Center (PORCE), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

3Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Japan Tokai National Higher Education and Research System, 1-1 Yanagido, Gifu-shi, Gifu, 501-1193
Japan

 

Received: 3 December 2019/Accepted: 20 May 2020

 

ABSTRACT

Polyisoprene (PI) has been widely used in many industries for decades. Many researches have reported that most significant weaknesses of polyisoprene are caused by unsaturated double bond C=C. The aim of this research was to synthesis and characterize a new copolymer utilizing the unsaturated double bond C=C of polyisoprene. PI is first modified to form hydroxylated polyisoprene (PIOH). The absence of alkene proton peak in NMR spectrum of PIOH is a strong evidence that the unsaturation of PI has been reduced. After that, PIOH is subjected as an initiator for the ring-opening polymerization of D,L-lactide in bulk condition to form hydroxylated polyisoprene-graft-polylactide copolymer (PI-g-PLA). The NMR spectrum of the new copolymer structure showed an unique peak at 4.09 ppm corresponding to methine proton of polyisoprene backbone adjacent to the PLA chains, indicating the grafting of D,L-lactide is successful to form PIOH-g-PLA. The average molecular weight, Mw of PIOH-g-PLA was significantly increased compared to PIOH, from 38260 to 56870 according to GPC. The surface of PIOH-g-PLA displayed significantly higher wettability and hidrophilicity than polyisoprene with water contact angle of below 30°. This owes to the terminal hydroxyl groups of PLA chains that lead to the formation of hydrogen bonds. Thermal stability studies by TGA and DTG of PIOH-g-PLA indicated two thermal degradations at Tmax 260 and 392 ℃ corresponding to PLA side chains and PIOH backbone, respectively, with PIOH exhibiting highest thermal stability compared to PI and the graft copolymer.

 

Keywords: Graft copolymer; hydroxylated polyisoprene; polylactide; ring opening polymerization

 

ABSTRAK

Poliisoprena (PI) mempunyai kegunaan yang meluas dalam pelbagai industri. Kebanyakan laporan kajian menunjukkan bahawa kelemahan sifat poliisoprena adalah disebabkan ketidaktepuan ikatan ganda dua C=C pada rantai poliisoprena. Kajian ini bertujuan untuk mensintesis dan mencirikan kopolimer baharu melalui tindak balas pada ikatan ganda dua tidak tepu C=C poliisoprena. PI pada mulanya diubah suai untuk membentuk poliisoprena terhidroksil (PIOH). Kehilangan puncak hidrogen alkena dalam spektrum NMR PIOH merupakan bukti kukuh bahawa ketidaktepuan PI telah berkurangan. Kemudian, PIOH digunakan sebagai pemula bagi tindak balas pempolimeran buka gelang dalam keadaan pukal untuk menghasilkan kopolimer poliisoprena terhidroksil-cangkuk-polilaktida (PIOH-g-PLA). Spektrum NMR struktur kopolimer baharu tersebut menunjukkan puncak unik pada 4.09 ppm yang ditetapkan kepada hidrogen metina rantai tulang belakang poliisoprena bersebelahan dengan rantai PLA, membuktikan bahawa cangkukan D,L-laktida berjaya membentuk PIOH-g-PLA. Berat purata berat molekul, Mw PIOH-g-PLA telah meningkat berbanding PIOH, daripada 38260 kepada 56870 seperti yang ditunjukkan melalui GPC. Sifat permukaan PIOH-g-PLA menunjukkan kebolehbasahan yang tinggi dan lebih hidrofilik dengan sudut sentuhan air kurang daripada 30°. Ini adalah kerana kumpulan berfungsi hidroksil hujung rantai PLA telah menyumbang kepada ikatan hidrogen. Pencirian kestabilan terma PIOH-g-PLA menggunakan TGA dan DTG menunjukkan dua penguraian terma pada Tmax 260 dan 392℃ bagi rantai sisi PLA dan rantai tulang belakang PIOH masing-masing, dengan PIOH mempunyai kestabilan terma yang lebih tinggi berbanding PI dan kopolimer cangkuk.

 

Kata kunci: Kopolimer cangkuk; pempolimeran buka gelang; poliisoprena terhidroksil; polilaktida

 

REFERENCES

Ahmad, I., Ismail, H. & Rashid, A. 2015. ENR-50 compatibilized natural rubber/recycled acrylonitrile-butadiene rubber blends. Sains Malaysiana 44(6): 835-842.

Anancharoenwong, E. 2011. Synthesis and characterization of cis-1,4-polyisoprene-based polyurethane coatings; study of their adhesive properties on metal surface. University of Maine, Ph.D. Thesis (Unpublished).

Anon. 2014. Preparation of Synthetic Polyisoprene Latex and Its Use in Coagulant Dipping. Kraton Performances Polymer Inc.

Azhar, N.H.A., Rasid, H.M. & Yusoff, S.F.M. 2017. Epoxidation and hydroxylation of liquid natural rubber. Sains Malaysiana 46(3): 485-491.

Azhar, N.H.A., Rasid, H.M. & Yusoff, S.F.M. 2016. Chemical modifications of liquid natural rubber. AIP Conference Proceedings 1784: 1-7.

Bristow, G.M., Campbell, J.M. & Farlie, E.D. 1969. comparative properties of natural rubber and synthetic cis-polyisoprene. Journal Rubber Research Institute Malaya 22(2): 225-241.

Brosse, J.C., Campistron, I., Derouet, D., Hamdaoui, A.E., Houdayer, S., Reyx, D. & Retoit-Gillier, S.  2000. Chemical modifications of polydiene elastomers: A survey and some recent results. Journal of Applied Polymer Science 78(8): 1461-1477.

Caldas, B.S., Danielle, L.B., Nakamura, C.V., Halila, S., Borsali, R. & Muniz, E.C. 2020. Drug carrier systems made from self-assembled glyco-nanoparticles of maltoheptaose-b-polyisoprene enhanced the distribution and activity of curcumin against cancer cells. Journal of Molecular Liquids 309(2020): 113022-113031.

Feng, L., Feng, S., Bian, X., Gao, L. & Chen, X. 2018. Pyrolysis mechanism of poly(lactic acid) for giving lactide under the catalysis of tin. Polymer Degradation and Stability 157: 212-223.

Gemmer, R.V. & Golub, M.A. 1978. 13C NMR spectroscopic study of epoxidized 1,4-polyisoprene and 1,4-polybutadiene. Journal of Polymer Science: Polymer Chemistry Edition 16(11): 2985-2990.

Hanhi, K., Poikelispaa, H. & Tirila, H.M. 2007. Elastometric materials. Plastic and Elastomer Technology: 1-84.

Hassan, M.I., Chong, L.H. & Sultana, N. 2016. Wettability and water uptake properties of PLA and PCL/gelatin-based electrospun scaffolds. ARPN Journal of Engineering and Applied Sciences 11(23): 13604-13607.

Hisham, S.F., Ahmad, I., Daik, R. & Ramli, A. 2011. Blends of LNR with unsaturated polyester resin from recycled PET: Comparison of mechanical properties and morphological analysis with the optimum blend by commercial resin. Sains Malaysiana 40(7): 729-735.

Idris, M.S.F., Yusoff, S.F.M. & Mokhtar, W.N.A.W. 2019. New approach on the modification of liquid natural rubber production using microwave technique. Sains Malaysiana 48(7): 1433-1438.

Kasalkova, N.S., Slepicka, P., Kolska, Z. & Svorcik, V. 2015. Wettability and Other Surface Properties of Modified Polymers. https://www.intechopen.com/books/wetting-and-wettability/wettability-and-other-surface-properties-of-modified-polymers.

Kind, D.J. & Hull, T.R. 2012. A review of candidate fire retardants for polyisoprene. Polymer Degradation and Stability 97(3): 201-213.

Kopinke, F.D., Remmler, M. & Mackenzie, K. 1996. thermal decomposition of biodegradable polyesters-i: poly(β-hydroxybutyric acid). Polymer Degradation and Stability 52(1): 25-38.

Liu, C., Bonaccurso, E., Sokuler, M., Auernhammer, G.K. & Butt, H.G. 2010. Dynamic Wetting of Polyisoprene Melts: Influence of the End Group. Langmuir 26(4): 2544-2549.

Malaysia Rubber Board (MRB). 2018. Natural Rubber Statistics 2018. Malaysia.

Nampoothiri, K., Nair, N.R. & John, R.P. 2010. An overview of the recent developments in polylactide (PLA) research. Bioresource Technology 101(22): 8493-8501.

Paoprasert, P. & Chanroj, T. 2016. Chlorohydrination of natural rubber latex using sodium hypochlorite for fuel-resistant materials. Rubber Chemistry and Technology 89(2): 251-261.

Pluta, M. 2004. Morphology and properties of polylactide modified by thermal treatment, filling with layered silicates and plasticization. Polymer 45(24): 8239-8251.

Pretula, J., Slomkowski, P. & Penczek, P. 2016. Polylactides-Methods of synthesis and characterization. Advanced Drug Delivery Reviews 107: 3-16.

Rasal, R.M., Janorkar, A.V. & Hirt, D.E. 2010. Poly(lactic acid) modifications. Progress in Polymer Science 35(3): 338-356.

Sato, H. & Tanaka, Y. 1979. 1H-NMR study of polyisoprenes. Journal of Polymer Science: Polymer Chemistry Edition 17(11): 3551-3558.

Schmidt, S.C. & Hillmyer, M.A. 2001. Polylactide stereocomplex crystallites as nucleating agents for isotactic polylactide. Journal of Polymer Science, Part B: Polymer Physics 39(3): 300-313.

Swartling, D.J., Coonce, J.G. & Cashman, D.J. 2018. Using balloons to model pi-conjugated systems and to teach frontier molecular orbital theory. World Journal of Chemical Education 6(2): 102-106.

Tanaka, Y. & Sato, H. 1976. Sequence distribution of cis-1, 4-and trans-1, 4-units in polyisoprenes. Rubber Chemistry and Technology 49(5): 1269-1275.

Thakur, K.A.M., Kean, R.T., Hall, E.S., Doscotch, M.A. & Munson, E.J. 1997a.  A quantitative method for determination of lactide composition in poly(lactide) using H NMR. Analytical Chemistry 69(21): 4303-4309.

Thakur, K.A., Kean, R.T., Hall, E.S., Kolstad, J.J., Lindgren, T.A., Doscotch, M.A., Siepmann, J.I. & Munson, E.J. 1997b. High-resolution 13C and 1H solution NMR study of poly(lactide). Macromolecules 30(8): 2422-2428.

Tretinnikov, O.N. & Ikada, Y. 1997. Hydrogen bonding and wettability of surface-grafted organophosphate polymer. Macromolecules 30(4): 1086-1090.

Wongthong, P., Nakason, C., Pan, Q.M., Rempel, G.L. & Kiatkamjornwong, S. 2013. Modification of deproteinized natural rubber via grafting polymerization with maleic anhydride. European Polymer Journal 49(12): 4035-4046.

Xia, L., Gao, H., Bi, W., Fu, W., Qiu, G. & Xin, Z. 2019. Shape memory behavior of carbon black-reinforced trans-1, 4-polyisoprene and low-density polyethylene composites. Polymers 11(5): 807-815.

Yakubchik, A.I., Tichomirov, B.I. & Sulimov, V.S. 1962. Hydrogenation of natural and synthetic cis-1,4- polyisoprene. Rubber Chemistry and Technology 35(4): 1063-1065.

Zahari, N.W., Mohd, A.F., Samsuri, A. & Kamarun, D. 2018a. Physical and mechanical properties of compounded hydroxylated natural rubber. AIP Conference Proceedings 1985: 040017.

Zahari, N.W., Mohd, A.F., Samsuri, A. & Kamarun, D. 2018b. Thermal properties of hydroxylated natural rubber from in-situ hydroxylation process. AIP Conference Proceedings 1985: 040016.

Zell, M.T., Padden, B.E., Paterick, A.J., Thakur, K.A.M., Kean, R.T., Hillmyer, M.A. & Munson, E.J. 2002. Unambiguous determination of the 13C and 1H NMR stereosequence assignments of polylactide using high-resolution solution NMR spectroscopy. Macromolecules 35(20): 7700-7707.

Zhong, Z., Pieter, J.D. & Jan, F. 2002. [(Salen)Al]-Mediated, controlled and stereoselective ring-opening polymerization of lactide in solution and without solvent: Synthesis of highly isotactic polylactide stereocopolymers from racemic D,L-lactide. Angewandte Chemie International Edition 41(23): 4510-4513.

 

*Corresponding author; email: farahhannan@ukm.edu.my

 

     

 

 

previous