Sains Malaysiana 49(4)(2020): 785-792

http://dx.doi.org/10.17576/jsm-2020-4904-07

 

Interferon Gamma Release Assay, A Powerful Tool for the Detection of Human and Bovine Tuberculosis in the Greater Cairo Area Compared to Other Diagnostic Tools

(AsaiPelepasan Gama Interferon, Suatu Alat Penting untuk Pengesanan Tuberkulosis Manusia dan Bovin di Kawasan Kaherah Besar Berbanding dengan Alat Diagnostik Lain)

 

MIRIHAN A. METWALLY1, AYMEN S. YASSIN2*, EMAD M. RIAD3, HAYAM M. HAMOUDA1 & MAGDY A. AMIN2

 

1Department of Microbiology, National Organization of Drug Control and Research (NODCAR), Giza, Egypt

 

2Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University

Cairo, 11562, Egypt

 

3Department of Bacteriology, Animal Health Research Institute, Giza, Egypt

 

Received: 24 January 2019/Accepted: 20 December 2019

 

ABSTRACT

Rapid detection is essential for the elimination and control of tuberculosis (TB) worldwide. Our study aimed to show the current and actual patterns of human and bovine TB distribution in the Greater Cairo Area community by the application of different TB diagnostic tools to individuals and farm animals with suspected TB. Both sputum and blood specimens were collected from 150 suspected human cases in the community. Sputum samples were examined using direct microscopy (Ziehl-Neelsen stain), culture on Lowenstein-Jensen medium, and real-time PCR. Blood samples were used for interferon gamma release assay (IGRA). In addition, lymph nodes and blood samples were collected from 57 tuberculin-positive animals. Lymph nodes were examined using direct microscopy (Ziehl-Neelsen stain), culture on Lowenstein-Jensen medium, and real-time PCR. Animal blood samples were also tested with IGRA. Sensitivity and specificity as well as positive and negative predictive values were calculated for all tests. The results showed that for both human and animal samples, IGRA provided the most accurate estimates of current TB infection compared to other tests. Furthermore, IGRA had the highest sensitivity and was the most convenient, proving its superiority compared to traditional methods in showing true levels of TB dissemination. This work shows that IGRA is a powerful tool for detection of TB in suspected humans and farm animals and should be incorporated into routine TB screening programs, which require more than one test.

 

Keywords: Egypt; interferon gamma release assay; Mycobacterium species; TB Real-time PCR

 

ABSTRAK

Pengesanan pantas adalah penting untuk penghapusan dan pengawalan tuberkulosis (TB) di seluruh dunia. Kajian kami bertujuan untuk menunjukkan corak terkini dan sebenar taburan TB manusia dan bovin di komuniti kawasan Kaherah Besar dengan penerapan alat diagnostik TB yang berbeza kepada individu dan haiwan ternakan yang disyaki TB. Kedua-dua spesimen kahak dan darah dikumpulkan daripada 150 kes manusia yang disyaki dalam kalanganmasyarakat. Sampel kahak diperiksa menggunakan mikroskopi langsung (stain Ziehl-Neelsen), kultur pada medium Lowenstein-Jensen dan PCR masa nyata. Sampel darah digunakan untuk asai pelepasan gama interferon (IGRA). Sebagai tambahan, nodus limfa dan sampel darah dikumpulkan daripada 57 haiwan positif tuberkulin. Nodus limfa diperiksa menggunakan mikroskopi langsung (stain Ziehl-Neelsen), dikultur pada medium Lowenstein-Jensen dan PCR masa nyata. Sampel darah haiwan juga diuji dengan IGRA. Kesensitifan dan kekhususan serta nilai ramalan positif dan negatif dihitung untuk semua ujian. Hasil kajian menunjukkan bahawa untuk sampel manusia dan haiwan, IGRA memberikan anggaran yang paling tepat mengenai jangkitan TB semasa berbanding dengan ujian lain. Selanjutnya, IGRA mempunyai kesensitifan tertinggi dan paling mudah, membuktikan keunggulannya dibandingkan dengan kaedah tradisi dalam menunjukkan tahap penyebaran TB yang sebenarnya. Kertas ini menunjukkan bahawa IGRA adalah alat penting untuk mengesan TB pada manusia dan haiwan ternakan yang disyaki dan harus dimasukkan ke dalam program pemeriksaan rutin TB, yang memerlukan lebih daripada satu ujian.

 

Kata kunci: Asai pelepasan gama interferon; Mesir; Mycobacterium species; PCR masa-nyata TB

 

REFERENCES

Abu-Taleb, A.M.F., El-Sokkary, R.H. & El Tarhouny, S.A. 2011. Interferon-gamma release assay for detection of latent tuberculosis infection in casual and close contacts of tuberculosis cases. Eastern Mediterranean Health Journal 17(10): 749-753.

Ai, J.W., Ruan, Q.L., Liu, Q.H. & Zhang, W.H. 2016. Review: Updates on the risk factors for latent tuberculosis reactivation and their managements. Emerging Microbes and Infections 3: 5. DOI: 10.1038/emi.2016.10.

American Thoracic Society. 2000. Targeted tuberculin testing and treatment of latent tuberculosis infection. American Journal of Respiratory and Critical Care Medicine 161: S221-S247.

Anderson, P., Munk, M.E., Pollock, J.M. & Doherty, T.M. 2000. Specific immune-based diagnosis of tuberculosis. Lancet 356: 1099-1104.

Ani, A., Okpe, S., Akambi, M., Ejelionu, E., Yakubu, B., Owolodun, O., Ekeh, P., Oche, A., Tyen, D. & Idoko, J. 2009. Comparison of a DNA based PCR method with conventional methods for the detection of M. tuberculosis in Jos, Nigeria. The Journal of Infection in Developing Countries 3: 470-475.

Ayele, W.Y., Neill, S.D., Zinsstag, J., Weiss, M.G. & Pavlik, I. 2004. Bovine tuberculosis: An old disease but a new threat to Africa. Int. J. Tuberc. Lung Dis. 8: 924-937.

Ben Kahla, I., Boschiroli, M.L., Souissi, F., Cherif, N., Benzarti, M., Boukadida, J. & Hammami, S. 2011. Isolation and molecular characterization of Mycobacterium bovis from raw milk in Tunisia African. Health Sciences 11(1): S2-S5.

Bianchi, G.M., Veneruso, G.M.D., Becciolini, L., Azzari, C., Chiappini, E., de Martino & Maurizio, M.D. 2009. Interferon-gamma release assay improves the diagnosis of tuberculosis in children. Pediatric Infectious Disease Journal 28: 510-514.

Broekmans, J.F., Migliori, G.B., Rieder, H.L., Leesz, J., Ruutu, P., Loddenkemper, R. & Raviglione, M.C. 2002. European framework for tuberculosis, control and elimination in countries with a low incidence. European Respiratory Journal 19: 765-775.

Cosivi, O., Grange, J.M., Daborn, C.J., Raviglione, M.C., Fujikura, T., Cousins, D., Robinson, R.A., Huchzermeyer, H.F., de Kantor, I. & Meslin, F.X. 1998. Zoonotic tuberculosis due to Mycobacterium bovis in developing countries. Emerging Infectious Disease 4: 59-70.

de kantor, I.N., Kim, S.J., Frieden, T., Laszlo, A., Luelmo, F., Norval, P.Y., Rieder, H., Valenzuela, P. & Weyer, K. 1998. Laboratory Services in Tuberculosis Control: Microscopy Part II. Italy: World Health Organization.

de Waard, J.H. & Robledo, J. 2007. Conventional diagnostic methods. In Tuberculosis. From Basic Science to Patient Care, edited by Palomino, J.C., Leão, S.C. & Ritacco, V. 1st edition. www.TuberculosisTextbook.com. pp. 401-424.

El-Sokkary, R.H., Abu-Taleb, A.M., El-Seifi, O.S., Zidan, H.E., Mortada, E.M., El-Hossary, D. & Farag, S.E. 2015. Assessing the prevalence of latent tuberculosis among health care providers Zagazig City, Egypt using tuberculin skin test and QuantiFERON-TB gold in-tube test. Cent. Eur. J. Public Health 4: 324-330.

Gordon, S.V. & Marcel, A.B. 2015. Comparative Mycobacteriology of the Mycobacterium Tuberculosis Complex. Wallingford, UK: Publisher CAB International.

Gormley, E., Doyle, M.B., McGill, K., Costello, E., Good, M. & Collins, J.D. 2004. The effect of the tuberculin test and the consequences of a delay in blood culture on the sensitivity of a gamma-interferon assay for the detection of Mycobacterium bovis infection in cattle. Vet. Immunol. Immunopathol. 102: 413-420.

Hassan, A., Fattouh, M., Atteya, I., Mohammadeen, H. & Ahmed, H. 2014. Validation of a rapid tuberculosis PCR assay for detection of MDR-TB patients in Sohag University Hospital. Journal of Applied & Environmental Microbiology 2: 65-69.

Hiban, N.A.A. & Hasan, H.A. 2015. Prevalence of latent tuberculosis infection among multinational health care workers in Muhayil Saudi Arabia. The Egyptian Journal of Bronchology 9: 183-187.

Issar, S. 2003. Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin. Microbial Rev. 16(3): 463-496.

Jiang, X.Y., Wang, C.F., Wang, C.F., Zhang, P.J. & He, Z.Y. 2006. Cloning and expression of Mycobacterium bovis secreted protein MPB83 in Escherichia coli. J. Biochem. & Molecul. Biol. 39: 22-25.

Lalvani, A. 2007. Diagnosing tuberculosis infections in the 21st century. New tools to tackle an old enemy. Chest 131: 1898-1906.

Marks, J. 1972. Ending the routine Guinea pigs test. Tubercle. 53: 31-34.

Mazurek, G.H., Jereb, J., Vernon, A., LoBue, P., Goldberg, S. & Kenneth Castro. 2010. Updated guidelines for using interferon gamma release assays to detect Mycobacterium tuberculosis infection - United States. MMWR Recomm. Rep. 59(5): 1-25.

Müller, B., Dürr, S., Alonso, S., Hattendorf, J., Laisse, C.J.M., Parsons, S.D.C., van Helden, P.D. & Zinsstag, J. 2013. Zoonotic Mycobacterium bovis-induced tuberculosis in humans. Emerging Infectious Diseases 19: 899-908.

Müller, B. 2009. Mycobacterium bovis at the animal-human interface: A problem, or not. Veterinary Microbiology 140: 371-381.

Patama Monkongdee, McCarthy, K.D., Cain, K.P., Theerawit Tasaneeyapan, Nguyen H. Dung, Nguyen T.N. Lan, Nguyen T.B. Yen, Nipat Teeratakulpisarn, Nibondh Udomsantisuk, Heilig, C. & Varma, J.K. 2009. Yield of acid-fast smear and mycobacterial culture for tuberculosis diagnosis in people with human immunodeficiency virus. Am. J. Respir. Crit. Care Med. 180(9): 903-908.

Petroff, S.A. 1915. A new and rapid method for isolation and cultivation of tubercle bacilli directly for the sputum and feaces. J. Exp. Med. 21: 38-42.

Ratledge, C. & Stanford, J. 1982. The Biology of the Mycobacteria. London: Academic Press. p. 544.

Ravn, P., Munk, M.E., Andersen, A.B., Lundgren, B., Lundgren, J.D., Nielsen, L.N., Kok-Jensen, A., Andersen, P. & Weldingh, K. 2005. Prospective evaluation of a whole-blood test using Mycobacterium tuberculosis-specific antigens ESAT-6 and CFP-10 for diagnosis of active tuberculosis. Clin. Diagn. Lab. Immunol. 12: 491-496.

Taylor, G.M., Murphy, E., Hopkins, R., Rutland, P. & Chistov, Y. 2007. First report of Mycobacterium bovis DNA in human remains from the iron age. Microbiol. 153: 1243-1249.

Taylor, M.J., Hughes, M.S., Skuce, R.A. & Neill, S.D. 2001. Detection of Mycobacterium bovis in bovine clinical specimens using real-time fluorescence and fluorescence resonance energy transfer probe rapid-cycle PCR. Journal of Clinical Microbiology 39: 1272-1278.

Thoen, C.O., Steele, J.H. & Gilsdorf, M.J. 2006. Mycobacterium bovis infection in animal and human. Can. Vet. J. 49(7): 688.

Tortoli, E. & Palomino, J.C. 2007. New diagnostic methods. In Tuberculosis. From Basic Science to Patient Care, edited by Palomino, J.C., Leão, S.C. & Ritacco, V. 1st edition. www.TuberculosisTextbook.com. pp. 441-486.

Van, S., Hermans, P., Haas, P., Roll, D. & Van, D. 1991. Occurrence and stability of insertion sequences in Mycobacterium tuberculosis complex strains: Evaluation of an insertion sequence-dependent DNA polymorphism as a tool in the epidemiology of tuberculosis. J. of Clinical Microbiology 29(11): 2578-2586.

Ward, L.J., Brown, J.C. & Davey, G.P. 1995. Detection of dairy Leuconostoc strains using the polymerase chain reaction. Letters in Applied Microbiology 20: 204-208.

World Health Organization. 2015. Global Tuberculosis Report. Geneva: WHO. Available at http://www.who.int/tb/publications/global_report/en/. Accessed on 23 November 2015.

 

*Corresponding author; email: aymen.yassin@pharma.cu.edu.eg

 

 

 

 

previous