Sains Malaysiana 50(12)(2021): 3547-3556

http://doi.org/10.17576/jsm-2021-5012-07

 

Pengoptimuman Campuran Enzim Selulase Rekombinan untuk Penguraian Tandan Kosong Kelapa Sawit

 (Optimization of Mixed Cellulase Enzymes for the Degradation of Oil Palm Empty Fruit Bunch)

 

SHAZILAH KAMARUDDIN*, FARAH DIBA ABU BAKAR & ABDUL MUNIR ABDUL MURAD

 

Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 28 September 2020/Accepted: 16 April 2021

 

ABSTRAK

Penggunaan enzim selulase untuk penguraian biojisim pertanian lignoselulosa telah lama dikaji dan pelbagai usaha telah dilakukan untuk meningkatkan kecekapan proses hidrolisis. Keberkesanan penguraian biojisim pertanian kepada gula ringkas memerlukan satu campuran enzim yang mengandungi pelbagai jenis aktiviti selulolitik. Dalam kajian ini, satu campuran multi-enzim rekombinan yang terdiri daripada tiga komponen asas selulase iaitu endoglukanase (EglB) dan β-glukosidase (BglA) daripada Aspergillus niger serta selobiohidrolase (CbhII) daripada Trichoderma virens telah dibentuk khusus untuk hidrolisis tandan kosong kelapa sawit (TKKS). Penghasilan enzim selulase rekombinan telah dilakukan menggunakan hos pengekspresan Pichia pastoris. Pengoptimuman nisbah enzim untuk tindak balas ditentukan menggunakan Kaedah Gerak Balas Permukaan (RSM). Hasil menunjukkan hidrolisis TKKS pada suhu 50 °C dan pH 5.0 menggunakan enzim pada nisbah 641.4 unit CMCase: 10.14 unit Avicelase: 93.8 unit β-glukosidase, menghasilkan gula terturun dan glukosa tertinggi, masing-masing sebanyak 63 mg dan 40 mg per gram substrat TKKS. Hasil hidrolisis TKKS oleh campuran multi enzim yang telah dibentuk dalam kajian ini menunjukkan ketiga-tiga gabungan enzim rekombinan ini berpotensi untuk digunakan bagi penguraian TKKS.

 

Kata kunci: Biojisim pertanian; hidrolisis enzim; kaedah gerak balas permukaan; koktel enzim

 

ABSTRACT

The use of cellulase enzymes in the degradation of lignocellulose agriculture biomass has long been studied and various efforts have been made to improve the efficiency of the hydrolysis process. The efficiency of enzymatic degradation of agricultural biomass to simple sugars requires a mixture of enzymes containing various types of cellulolytic activity. In this study, a recombinant multi-enzyme mixture consisting of three basic components of cellulase namely endoglucanase (EglB) and β-glucosidase (BglA) from Aspergillus niger as well as cellobiohydrolase (CbhII) of Trichoderma virens was created specifically for hydrolysis of oil palm empty fruit bunch (OPEFB). The production of recombinant cellulases has been performed using Pichia pastoris expression host. The enzyme ratio optimisation was determined using Response Surface Methodology (RSM). The results showed that the hydrolysis of OPEFB at 50 °C and pH 5.0 using enzymes at 641.4 units CMCase: 10.14 Avicelase units: 93.8 β-glucosidase units, produced the highest reducing sugar and glucose at 63 mg and 40 mg per gram of OPEFB substrate, respectively. The hydrolysis of OPEFB by a multi-enzyme mixture that has been formed in this study showed that these three combinations of recombinant enzymes have the potential to be used for the degradation of OPEFB.

 

Keywords: Agricultural biomass; enzymatic hydrolysis; enzyme cocktail; response surface methodology

 

REFERENCES

Adsul, M., Sandhu, S.K., Singhania, R.R., Gupta, R., Puri, S.K. & Mathur, A. 2020. Designing a cellulolytic enzyme cocktail for the efficient and economical conversion of lignocellulosic biomass to biofuels. Enzyme and Microbial Technology 133(109442): 1-12.

Bahadi, M., Yusoff, M.F., Salimon, J. & Derawi, D. 2020. Optimization of response surface methodology by D-optimal design for alkaline hydrolysis of crude palm kernel oil. Sains Malaysiana 49(1): 29-41.

Bunterngsook, B., Laothanachareon, T., Chotirotsukon, C., Inoue, H., Fujii, T., Hoshino, T., Roongsawang, N., Kuboon, S., Kraithong, W., Techanan, W., Kraikul, N. & Champreda, V. 2018. Development of tailor-made synergistic cellulolytic enzyme system for saccharification of steam exploded sugarcane bagasse. Journal of Bioscience and Bioengineering 125(4): 390-396.

Campos, L.M.A., Moura, H.O.M.A., Cruz, A.J.G., Assumpção, S.M.N., de Carvalho, L.S. & Pontes, L.A.M. 2020. Response surface methodology (RSM) for assessing the effects of pretreatment, feedstock, and enzyme complex association on cellulose hydrolysis. Biomass Conversion and Biorefinery https://doi.org/10.1007/s13399-020-00756-4.

Charpentier Alfaro, C. & Méndez Arias, J. 2020. Enzymatic conversion of treated oil palm empty fruit bunches fiber into fermentable sugars: Optimization of solid and protein loadings and surfactant effects. Biomass Conversion and Biorefinery https://doi.org/10.1007/s13399-020-00724-y.

Chiew, Y.L. & Shimada, S. 2013. Current state and environmental impact assessment for utilizing oil palm empty fruit bunches for fuel, fiber and fertilizer - A case study of Malaysia. Biomass and Bioenergy 51: 109-124.

Chong, P.S., Jahim, J.M., Harun, S., Lim, S.S., Mutalib, S.A., Hassan, O. & Nor, M.T.M. 2013. Enhancement of batch biohydrogen production from prehydrolysate of acid treated oil palm empty fruit bunch. International Journal of Hydrogen Energy 38(22): 9592-9599.

Coward-Kelly, G., Aiello-Mazzari, C., Kim, S., Granda, C. & Holtzapple, M. 2003. Suggested improvements to the standard filter paper assay used to measure cellulase activity. Biotechnology and Bioengineering 82(6): 745-749.

Decker, S.R., Adney, W.S., Jennings, E., Vinzant, T.B. & Himmel, M.E. 2003. Automated filter paper assay for determination of cellulase activity. Applied Biochemistry and Biotechnology 107(1-3): 689-703.

Derman, E., Abdulla, R., Marbawi, H. & Sabullah, M.K. 2018. Oil palm empty fruit bunches as a promising feedstock for bioethanol production in Malaysia. Renewable Energy 129: 285-298.

Fang, H., Zhao, C. & Song, X.Y. 2010. Optimization of enzymatic hydrolysis of steam-exploded corn stover by two approaches: Response surface methodology or using cellulase from mixed cultures of Trichoderma reesei RUT-C30 and Aspergillus niger NL02. Bioresource Technology 101(11): 4111-4119.

Hamzah, F., Idris, A. & Shuan, T.K. 2011. Preliminary study on enzymatic hydrolysis of treated oil palm (Elaeis) empty fruit bunches fibre (EFB) by using combination of cellulase and β 1-4 glucosidase. Biomass and Bioenergy 35(3): 1055-1059.

Kamaruddin, S., Abu Bakar, F.D., Illias, R.M., Said, M., Hassan, O. & Murad, A.M.A. 2015. Overexpression, purification and characterization of Aspergillus niger beta-glucosidase in Pichia pastoris. Malaysian Applied Biology 44: 7-11.

Kamaruddin, S., Mahadi, N.M., Md Illias, R., Hassan, O., Sulaiman, S., Broughton, W., Bharudin, I., Abu Bakar, F.D. & Abdul Murad, A.M. 2018. Effect of Pichia pastoris host strain on the properties of recombinant Aspergillus niger endoglucanase, EglB. Malaysian Journal of Microbiology 14(6): 554-562.

Kleman-Leyer, K.M., Siika-Aho, M., Teeri, T.T. & Kent Kirk, T. 1996. The cellulases endoglucanase I and cellobiohydrolase II of Trichoderma reesei act synergistically to solubilize native cotton cellulose but not to decrease its molecular size. Applied and Environmental Microbiology 62(8): 2883-2887.

Loh, S.K. 2017. The potential of the Malaysian oil palm biomass as a renewable energy source. Energy Conversion and Management 141: 285-298.

Lopes, A.M., Ferreira Filho, E.X. & Moreira, L.R.S. 2018. An update on enzymatic cocktails for lignocellulose breakdown. Journal of Applied Microbiology 125(3): 632-645.

Meyer, A.S., Rosgaard, L. & Sørensen, H.R. 2009. The minimal enzyme cocktail concept for biomass processing. Journal of Cereal Science 50(3): 337-344.

Miller, G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31(3): 426-428.

Ng, W.P.Q., Lam, H.L., Ng, F.Y., Kamal, M. & Lim, J.H.E. 2012. Waste-to-wealth: Green potential from palm biomass in Malaysia. Journal of Cleaner Production 34: 57-65.

Noratiqah, K., Madihah, M.S., Aisyah, B.S., Eva, M.S., Suraini, A.A. & Kamarulzaman, K. 2013. Statistical optimization of enzymatic degradation process for oil palm empty fruit bunch (OPEFB) in rotary drum bioreactor using crude cellulase produced from Aspergillus niger EFB1. Biochemical Engineering Journal 75: 8-20.

Peciulyte, A., Pisano, M., de Vries, R.P. & Olsson, L. 2017. Hydrolytic potential of five fungal supernatants to enhance a commercial enzyme cocktail. Biotechnology Letters 39(9): 1403-1411.

Quay, D.H.X., Yee, Y.H., Illias, R.M., Mahadi, N.M., Bakar, F.D.A. & Murad, A.M.A. 2017. Characterisation of recombinant Trichoderma reesei cellobiohydrolase and the potential of cellulase mixture in hydrolyzing oil palm empty fruit bunches. Malaysian Applied Biology 46: 11-19.

Rosales-Calderon, O. & Arantes, V. 2019. A review on commercial-scale high-value products that can be produced alongside cellulosic ethanol. Biotechnology for Biofuels 12(240): 1-58.

Suwannarangsee, S., Bunterngsook, B., Arnthong, J., Paemanee, A., Thamchaipenet, A., Eurwilaichitr, L., Laosiripojana, N. & Champreda, V. 2012. Optimisation of synergistic biomass-degrading enzyme systems for efficient rice straw hydrolysis using an experimental mixture design. Bioresource Technology 119: 252-261.

Tang, P.L., Abdul, P.M., Engliman, N.S. & Hassan, O. 2018. Effects of pretreatment and enzyme cocktail composition on the sugars production from oil palm empty fruit bunch fiber (OPEFBF). Cellulose 25(8): 4677-4694.

Van Dyk, J.S. & Pletschke, B.I. 2012. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes - Factors affecting enzymes, conversion and synergy. Biotechnology Advances 30(6): 1458-1480.

Wang, Z., Winestrand, S., Gillgren, T. & Jönsson, L.J. 2018. Chemical and structural factors influencing enzymatic saccharification of wood from aspen, birch and spruce. Biomass and Bioenergy 109: 125-134.

Wood, T. & McCrae, S.I. 1979. Synergism between enzymes involved in the solubilization of native cellulose. Advances in Chemistry Series 181: 181-209.

Wood, T.M. & Bhat, K.M. 1988. Methods for measuring cellulase activities. Methods in Enzymology 160: 87-112.

Zhou, J., Wang, Y.H., Chu, J., Luo, L.Z., Zhuang, Y.P. & Zhang, S.L. 2009. Optimization of cellulase mixture for efficient hydrolysis of steam-exploded corn stover by statistically designed experiments. Bioresource Technology 100(2): 819-825.

 

*Corresponding author; email: shazilah@ukm.edu.my

 

 

 

previous