Sains Malaysiana 51(10)(2022): 3423-3436

http://doi.org/10.17576/jsm-2022-5110-25

 

A Geant4 Simulation on the Application of Multi-layer Graphene as a Detector Material in High-energy Physics

(Simulasi Geant4 ke atas Pengaplikasian Grafin Berbilang Lapisan sebagai Bahan Pengesan dalam Fizik Bertenaga Tinggi)

 

NURUL HIDAYAH MOHAMAD NOR1,2,*, NUR AFIRA ANUAR2, WAN AHMAD TAJUDDIN WAN ABDULLAH1, BOON TONG GOH2 & MOHD FAKHARUL ZAMAN RAJA YAHYA3

 

1National Centre for Particle Physics, Universiti Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

2Low Dimensional Material Research Centre, Department of Physics, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

3Faculty of Applied Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia

 

Received: 3 January 2022/Accepted: 25 May 2022

 

Abstract

The excellent properties of graphene, such as its high thermal conductivity, high electrical conductivity, and high electron density, make it an ideal candidate as a detector material in high-energy physics applications. In this work, we demonstrate the feasibility of multi-layer graphene (MLG) as a detector material in a high-energy environment. The Geant4 software package was used to estimate the energy of the deposited electrons within various thicknesses of MLG, ranging from 3 to 20 nm. The efficiency of the MLG as a detector material was further analyzed from the scattering angle and the yield of the secondary particles produced from the electron interaction with the material. The incident electron’s kinetic energy used herein ranged between 30 keV and 1 GeV, at a particle fluence of 1×107 e/cm2. The results show that the deposited energy was relatively low for the interaction with 1 MeV electrons, and dramatically increased as the thickness increases beyond 15 nm. This result was further supported by the highest yield of gamma radiation recorded by the interaction with a kinetic energy larger than 1 MeV, for thickness larger than 15 nm. The results suggest that the MLG works best as a charged particle detector in low energy ranges, while for high energy ranges, a thickness over 15 nm is suggested. The findings demonstrate that a MLG with a thickness larger than 15 nm could potentially be used as a detector material in high-energy conditions.

 

Keywords: Detector material; Geant4; Monte Carlo simulation method

 

Abstrak

Ciri cemerlang grafin seperti kekonduksian terma, kekonduksian elektrik dan ketumpatan elektron yang tinggi telah menjadikannya calon yang ideal sebagai bahan pengesan dalam aplikasi fizik bertenaga tinggi. Kajian ini menunjukkan kebolehlaksanaan grafin berbilang lapisan (MLG) sebagai bahan pengesan dalam persekitaran bertenaga tinggi. Perisian Geant4 digunakan untuk mengukur tenaga elektron terdeposit dalam pelbagai ketebalan MLG, antara 3 hingga 20 nm. Kecekapan MLG sebagai bahan pengesan dianalisis selanjutnya dari sudut serakan dan hasil zarah sekunder yang dihasilkan daripada interaksi elektron dengan bahan. Tenaga kinetik elektron yang digunakan di sini adalah antara 30 keV hingga 1 GeV, pada kelancaran zarah 1×107 e/cm2. Hasil kajian menunjukkan bahawa tenaga yang didepositkan adalah agak rendah untuk interaksi dengan elektron 1 MeV dan bertambah baik secara mendadak dengan ketebalan melebihi 15 nm. Keputusan ini disokong lagi oleh hasil sinaran gamma tertinggi yang diperoleh untuk interaksi dengan tenaga kinetik lebih besar daripada 1 MeV bagi ketebalan melebihi 15 nm. Hasil kajian ini menunjukkan bahawa MLG berfungsi paling baik sebagai pengesan zarah bercas dalam julat tenaga rendah, manakala untuk julat tenaga tinggi, ketebalan melebihi 15 nm dicadangkan.

 

Kata kunci: Bahan pengesan; Geant4; kaedah simulasi Monte Carlo

 

REFERENCES

Ang, P.K., Chen, W., Wee, A.T.S. & Kian, P.L. 2008. Solution-gated epitaxial graphene as pH sensor. Journal of the American Chemical Society 130(44): 14392-14393. doi:10.1021/ja805090z.

Bachmair, F. 2016. CVD diamond sensors in detectors for high energy physics. PhD Thesis.  ETH Zürich (Unpublished). https://doi.org/10.3929/ethz-a-010748643.

Balandin, A.A. 2011. Thermal properties of graphene and nanostructured carbon materials. Nature Materials 10(8): 569-581. doi:10.1038/nmat3064.

Banhart, F. 1999. Irradiation effects in carbon nanostructures. Reports on Progress in Physics 62(8): 1181-1221. doi:10.1088/0034-4885/62/8/201.

Banhart, F., Li, J.X. & Krasheninnikov, A.V. 2005. Carbon nanotubes under electron irradiation: Stability of the tubes and their action as pipes for atom transport. Physical Review B - Condensed Matter and Materials Physics 71(24): 1-4. doi:10.1103/PhysRevB.71.241408.

Berger, M.J., Inokuti, M., Anderson, H.H., Bichsel, H., Dennis, J.A., Powers, D., Seltzer, S.M. & Turner, J.E. 1984. Stopping powers for electrons and positrons. Journal of the International Commission on Radiation Units and Measurements 19(2): 281. doi:https://doi.org/10.1093/jicru/os19.2.Report37.

Biswas, S. & Drzal, L.T. 2010. Multilayered nano-architecture of variable sized graphene nanosheets for enhanced supercapacitor electrode performance. ACS Applied Materials and Interfaces 2(8): 2293-2300. doi:10.1021/am100343a.

Bortoletto, D. 2015. How and why silicon sensors are becoming more and more intelligent? Journal of Instrumentation 10(8). doi:10.1088/1748-0221/10/08/C08016.

Buckley, A., Krauss, F., Plätzer, S., Seymour, M., Alioli, S., Andersen, J., Bellm, J., Butterworth, J., Dasgupta, M., Duhr, C., Frixione, S., Gieseke, S., Hamilton, K., Hesketh, G., Hoeche, S., Jung, H., Kilian, W., Lönnblad, L., Maltoni, F., Mangano, M., Mrenna, S.,  Nagy, Z., Nason, P., Nurse, E., Ohl, T., Oleari, C., Papaefstathiou, A., Plehn, T., Prestel, S., , E., Reuter, J., Richardson, P., Salam, G., Schoenherr, M., Schumann, S., Siegert, F., Siódmok, A.,  Sjödahl, M., Sjöstrand, T., Skands, P., Soper, D., Soyez, G. & Webber, B. 2019. Monte Carlo event generators for high energy particle physics event simulation. arXiv. https://arxiv.org/abs/1902.01674

Carrier, J.F., Archambault, L., Beaulieu, L. & Roy, R. 2004. Validation of GEANT4, an object-oriented Monte Carlo toolkit, for simulations in medical physics. Medical Physics 31(3): 484-492. doi:10.1118/1.1644532.

Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S. & Geim, A.K. 2009. The electronic properties of graphene. Reviews of Modern Physics 81(1): 109-162. doi:10.1103/RevModPhys.81.109.

Compagnini, G., Giannazzo, F., Sonde, S., Raineri, V. & Rimini, E. 2009. Ion irradiation and defect formation in single layer graphene. Carbon 47(14): 3201-3207. doi:10.1016/j.carbon.2009.07.033.

Demir, N. & Kuluöztürk, Z.N. 2021. Determination of energy resolution for a NaI(Tl) detector modeled with FLUKA code. Nuclear Engineering and Technology 53(11): 3759-3763. doi:10.1016/J.NET.2021.05.017.

Giani, S., Leroy, C., Price, L., Rancoita, P-G. & Ruchti, R. 2014. Astroparticle, particle, space physics and detectors for physics applications. Astroparticle, Particle, Space Physics, Radiation Interaction, Detectors and Medical Physics Applications. Vol. 8. doi:doi:10.1142/9166.

Girit, Ç.Ö., Meyer, J.C., Erni, R., Rossell, M.D., Kisielowski, C., Yang, L., Park, C.H., Crommie, M.F., Cohen, M.L., Louie, S.G. & Zettl, A. 2009. Graphene at the edge: Stability and dynamics. Science 323(5922): 1705-1708. doi:10.1126/science.1166999.

Golunski, M. & Postawa, Z. 2018. Effect of kinetic energy and impact angle on carbon ejection from a free-standing graphene bombarded by kilo-electron-volt C 60. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 36(3): 03F112. doi:10.1116/1.5019732.

Grupen, C., Shwartz, B.A. & Spieler, H. 2008. Particle Detectors. Cambridge: Cambridge University Press.

Guatelli, S., Cutajar, D., Oborn, B. & Rosenfeld, A.B. 2011. Introduction to the geant4 simulation toolkit. AIP Conference Proceedings 1345: 303-322. doi:10.1063/1.3576174.

Hartmann, F. & Kaminski, J. 2011. Advances in tracking detectors. Annual Review of Nuclear and Particle Science 61: 197-221. doi:10.1146/annurev-nucl-102010-130052.

Holbert, K.E. 2012. Charged particle ionization and range. EEE460-Handout.

Hossain, I., Sharip, N. & Viswanathan, K.K. 2012. Efficiency and resolution of HPGe and NaI(Tl) detectors using gamma-ray spectroscopy. Scientific Research and Essays 7(1): 86-89. doi:10.5897/sre11.1717.

Jeong, H.Y., Lee, D-S., Choi, H.K., Lee, D.H., Kim, J-E., Jeong, H.Y., Lee, D-S., Choi, H.K., Lee, D.H. & Kim, J-E. 2010. Flexible room-temperature NO2 gas sensors based on carbon nanotubes/reduced graphene hybrid films flexible room-temperature NO2 gas sensors based on carbon nanotubes/reduced graphene hybrid films. Applied Physics Letters 96: 213105. doi:10.1063/1.3432446.

Khan, F.M. & Gibbons, J.P. 2010. The Physics of Radiation Therapy. 5th ed. Philadelphia:  Wolters Kluwer.

Kholili, J. 2015. Using graphene as ion detector. Master Thesis. Chalmers University of Technology, Gothenburg Sweden (Unpublished).

Kim, K.J., Choi, J., Lee, H., Lee, H.K., Kang, T.H., Han, Y.H., Lee, B.C., Kim, S. & Kim, B. 2008. Effects of 1 MeV electron beam irradiation on multilayer graphene grown on 6H-SiC(001). Journal of Physical Chemistry C 112(34): 13062-13064. doi:10.1021/jp805141e.

Krasheninnikov, A.V. & Banhart, F. 2007. Engineering of nanostructured carbon materials with electron or ion beams. Nature Mate 6: 723-733. doi:10.1038/nmat1996.

Kumar, S., Reshi, B.A. & Varma, R. 2018a. Comparison of silicon, germanium, gallium nitride, and diamond for using as a detector material in experimental high energy physics. Results in Physics 11(August): 461-474. doi:10.1016/j.rinp.2018.08.045.

Kumar, S., Varma, R., Das Gupta, K., Sarin, P. & Deb, S.K. 2018b. Comparison of Si, Ge, and diamond sensors for using it in hep experiments. Springer Proceedings in Physics 201: 97-105. doi:10.1007/978-981-10-7665-7_9.

Le Bleis, T. & Klenze, P. 2014. Physics simulation with Geant4. Technical University Munich. https://www.ph.tum.de/academics/org/labs/fopra/docs/userguide-77.en.pdf

Lechner, A. 2018. Particle interactions with matter. CERN Yellow Reports: School Proceedings 5(March): 47-68. doi:10.23730/CYRSP-2018-005.47.

Lee, C., Wei, X., Kysar, J.W. & Hone, J. 2008. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887): 385-388. doi:10.1126/science.1156211.

Lin, Y-M., Jenkins, K.A., Valdes-garcia, A., Small, J.P., Farmer, D.B. & Avouris, P. 2009. Operation of graphene transistors at gigahertz frequencies. Nano Letters 9(1): 422-426. doi:10.1021/nl803316h.

Liu, H., Liu, Y. & Zhu, D. 2011. Chemical doping of graphene. Journal of Materials Chemistry 21(10): 3335-3345. doi:10.1039/c0jm02922j.

Lu, G., Ocola, L.E. & Chen, J. 2009. Reduced graphene oxide for room-temperature gas sensors. Nanotechnology 20(44): 445502. doi:10.1088/0957-4484/20/44/445502.

Mayorov, A.S., Gorbachev, R.V., Morozov, S.V., Britnell, L., Jalil, R., Ponomarenko, L.A., Blake, P., Novoselov, K.S., Watanabe, K., Taniguchi, T. & Geim, A.K. 2011. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Letters 11(6): 2396-2399. doi:10.1021/nl200758b.

Meroli, S. 2015. Interaction of Radiation with Matter: From the Theory to the Measurements. https://www.researchgate.net/publication/283855144_Interaction_of_radiation_with_matter_from_the_theory_to_the_measurements

Metcalfe, J., Mejia, I., Murphy, J., Quevedo, M., Smith, L., Alvarado, J., Gnade, B. & Takai, H. 2014. Potential of thin films for use in charged particle tracking detectors. http://arxiv.org/abs/1411.1794.

Meyer, J.C., Kisielowski, C., Erni, R., Rossell, M.D., Crommie, M.F. & Zettl, A. 2008. Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Letters 8(11): 3582-3586. doi:10.1021/nl801386m.

Moll, M. 2006. Radiation tolerant semiconductor sensors for tracking detectors. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 565(1): 202-211. doi:10.1016/j.nima.2006.05.001.

Moser, J., Barreiro, A. & Bachtold, A. 2007. Current-induced cleaning of graphene. Applied Physics Letters 91(16): 1-4. doi:10.1063/1.2789673.

Murata, H., Nakajima, Y., Saitoh, N., Yoshizawa, N., Suemasu, T. & Toko, K. 2019. High-electrical-conductivity multilayer graphene formed by layer exchange with controlled thickness and interlayer. Scientific Reports 9(1): 1-5. doi:10.1038/s41598-019-40547-0.

Nur Afira binti Anuar, Nurul Hidayah Mohamad Nor, Rozidawati binti Awang, Hideki Nakajima, Sarayut Tunmee, Manoj Tripathi, Alan Dalton & Boon Tong Goh. 2021. Low-temperature growth of graphene nanoplatelets by hot-wire chemical vapour deposition. Surface and Coatings Technology 411: 126995. doi:10.1016/j.surfcoat.2021.126995.

Razaghi, S., Saramad, S. & Shamsaei, M. 2019. Simulation study of resistive plate chamber’s (RPCs) capability for medical imaging applications. Journal of Instrumentation 14: P01024.

Robinson, J.T., Keith Perkins, F., Snow, E.S., Wei, Z. & Sheehan, P.E. 2008. Reduced graphene oxide molecular sensors. Nano Letters 8(10): 3137-3140. doi:10.1021/nl8013007.

Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I. & Novoselov, K.S. 2007. Detection of individual gas molecules adsorbed on graphene. Nature Materials 6(9): 652-655. doi:10.1038/nmat1967.

Schmidt, B. 2016. The high-luminosity upgrade of the LHC: Physics the high-luminosity upgrade of the LHC physics and technology challenges for the accelerator and the experiments. Journal of Physics: Conference Series 706: 22002. doi:10.1088/1742-6596/706/2/022002.

Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S.I. & Seal, S. 2011. Graphene based materials: Past, present and future. Progress in Materials Science 56(8): 1178-1271. doi:10.1016/j.pmatsci.2011.03.003.

Spieler, H. 2005. Semiconductor Detector Systems. Oxford: Clarendon Press.

Tanabashi, M., Hagiwara, K., Hikasa, K., Nakamura, K., Sumino, Y., Takahashi, F., Tanaka, J., et al. 2018. Review of particle physics. Physical Review D 98(3): 30001. doi:10.1103/PhysRevD.98.030001.

Tielrooij, K.J., Song, J.C.W., Jensen, S.A., Centeno, A., Pesquera, A., Zurutuza Elorza, A., Bonn, M., Levitov, L.S. & Koppens, F.H.L. 2013. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nature Physics 9(4): 248-252. doi:10.1038/nphys2564.

Wang, J., Chen, D., Chen, T. & Shao, L. 2020. Displacement of carbon atoms in few-layer graphene. Journal of Applied Physics 128: 085902. doi:10.1063/5.0013310.

Zhang, T., Cheng, Z., Wang, Y., Li, Z., Wang, C., Li, Y. & Fang, Y. 2010. Self-assembled 1-octadecanethiol monolayers on graphene for mercury detection. Nano Letters 10(11): 4738-4741. doi:10.1021/nl1032556.

Zheng, X., Chen, W., Wang, G., Yu, Y., Qin, S., Fang, J., Wang, F. & Zhang, X.A. 2015. The Raman redshift of graphene impacted by gold nanoparticles. AIP Advances 5(5): 1-8. doi:10.1063/1.4921316.

 

*Corresponding author; email: nurulhidayah@um.edu.my

 

 

 

 

 

previous