Sains Malaysiana 51(7)(2022): 1969-1977

http://doi.org/10.17576/jsm-2022-5107-02

 

Application of Seismic Reflection Survey for Aquifer Layers Characterization at the Felda Lepar Utara Area, Pahang, Malaysia

(Pengaplikasian Ukuran Pantulan Seismik untuk Pencirian Lapisan Akuifer di Kawasan Felda Lepar Utara, Pahang, Malaysia)

 

AHMAD DEDI PUTRA1,*, NORASIAH SULAIMAN1, NORSYAFINA ROSLAN1, HABIBAH JAMIL1, UMAR HAMZAH1& KHAIRUNNISA ALIAS2

 

1Department of Earth Science and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

2Department of Mineral and Geoscience Malaysia, Bandar Indera Mahkota, 25604 Kuantan, Pahang Darul Makmur, Malaysia

 

Received: 13 March 2021/Accepted: 16 December 2021

 

Abstract

Precise determination of subsurface structure is crucial in hydrogeological studies to correctly determine the potential of groundwater resources, and the sustainability of those resources. This study used the seismic reflection method to characterize the aquifer layer in Ladang Lepar Utara 8 (Line 1) and Ladang Sungai Rengai (Line 2) in the Felda Lepar Utara area, Pahang, Malaysia, due to its high accuracy, high-resolution and deeper penetration. The field data acquisition survey involved roll-along techniques with shot spacing of 5m along the line using 24-channels ABEM terraloc Mark-6 and CMP (common mid-point) profiling techniques. Seismic interpretation of reflection data and tubewell information from nearby borehole data indicates that the area consists of a single type of rock known as phyllitic meta-sedimentary rocks of the Sri Jaya beds that have been deformed by intense faulting and fracturing (from about 30 to 750 m depth in Line 1 and about 75 m to 500m depth in Line 2). This formation is overlain by recent alluvium that ranges in thickness from 30 to 75 m and is underlain by Lepar Granodiorite. The alluvium is a shallow aquifer system that can be classified as an unconfined aquifer, whereas the phyllitic meta-sedimentary rock of the Srijaya Beds is a deep aquifer system that can be classified as a confined aquifer with an alluvium layer (up to 75 m thick) on top as a confining bed. The occurrence of intense faulting and fracturing increases the porosity and permeability of the rock formation and hence increases its potential as a groundwater prospective/promising zone.

 

Keywords: ABEM terraloc Mark-6; aquifer; groundwater; seismic reflection method

 

Abstrak

Penentuan struktur bawah permukaan sangat penting dalam kajian hidrogeologi untuk menentukan potensi sumber air bawah tanah dengan tepat dan kelestarian sumber tersebut. Kajian ini menggunakan kaedah pantulan seismik untuk mencirikan lapisan akuifer di Ladang Lepar Utara 8 (Jalur 1) dan Ladang Sungai Rengai (Jalur 2) di kawasan Felda Lepar Utara, Pahang, Malaysia kerana ketepatan dan resolusinya yang tinggi serta penembusan yang lebih mendalam kaedah ini. Tinjauan pemerolehan data lapangan melibatkan teknikroll-along dengan jarak tembakan 5 m di sepanjang garis menggunakan 24-saluran ABEM terraloc Mark-6 dan teknik pemprofilan CMP (common mid-point). Tafsiran seismik terhadap data pantulan dan maklumat tiub daripada data lubang gerudi yang berdekatan menunjukkan bahawa kawasan ini terdiri daripada satu jenis batu yang dikenali sebagai batuan meta-sedimen filit daripada Lapisan Sri Jaya yang tercangga teruk oleh sesar dan retakan (daripada kedalaman sekitar 30 hingga 750 m di Garis 1 dan kedalaman kira-kira 75 hingga 500 m di Garis 2). Formasi ini dilapisi di bahagian atas oleh aluvium resen dengan ketebalan antara 30 hingga 75 m dan dilapisi di bahagian bawah oleh Granodiorite Lepar. Lapisan aluvium tersebut merupakan sistem akuifer cetek yang dapat dikelaskan sebagai akuifer tak terkekang, manakala batuan meta-sedimen filit Lapisan Srijaya merupakan sistem akuifer dalam yang dapat dikelaskan sebagai akuifer terkekang oleh lapisan aluvium (setebal 75 m) di atasnya. Struktur sesar dan retakan yang rencam meningkatkan keliangan dan kebolehtelapan formasi batuan ini dan dengan itu meningkatkan potensinya sebagai zon prospektif air bawah tanah.

 

Kata kunci: ABEM terraloc Mark-6; air bawah tanah; akuifer; kaedah pantulan seismik

 

REFERENCES

Ab. Talib, J. 2012. Geologi dan Sumber Mineral Kawasan Kuala Tembeling Pahang Darul Makmur. Kuala Lumpur. Jabatan Mineral dan Geosains Malaysia.

Abdelaziz, R. & Bambi, C.K.M. 2016. Groundwater assessment of the Bléone Catchment Karst Aquifer in Southern France. In IOP Conference Series: Earth and Environmental Science 44(2): 022028.

Abdullah. M.P. 2013. Geologi dan Sumber Mineral Kawasan Maran Pahang Darul Makmur. Kuala Lumpur. Minerals and Geoscience Department Malaysia.

Brassington, R. 2007. Field Hydrogeology, the Geological Field Guide Series. 3rd ed. West Sussex, England: John Wiley & Sons, Ltd.

Burger, H.R., Sheehan, A.F. & Jones, C.H. 1992. Introduction to Applied Geophysics: Exploration of the Shallow Subsurface. New York: W.W. Norton & Company. p. 65.

Burton, C.K. 1973. Mesozoic. In Geology of the Malay Peninsula, edited by Gobbett, D.J. & Hutchison, C.S. Wiley Interscience. pp. 97-141.

Carrard, N., Foster, T. & Willetts, J. 2019. Groundwater as a source of drinking water in Southeast Asia and the Pacific: A multi-country review of current reliance and resource concerns. Water 11(8): 1605.

Geo Strata SDN. BHD. 2018. Perkhidmatan Penggerudian dan Pembinaan Telaga Tiub Air Tanah di Felda Lepar Utara 7, Jerantut, Pahang. Minerals and Geoscience Department Malaysia (Pahang), Report (Draft).

Giustiniani, M., Accaino, F., Picotti, S. & Tinivella, U. 2009. 3D seismic data for shallow aquifers characterisation. Journal of Applied Geophysics 68(3): 394-403.

Kearey, P., Brooks, M. & Hill, I. 2002. An Introduction to Geophysical Exploration. 3rd ed.  Garsington Road, Oxford: Blackwell Science Ltd.

Khoo, H.P. 1983. Mesozoic stratigraphy in Peninsular Malaysia. Proceedings Workshop on Stratigraphic Correlation of Thailand and Malaysia, 1, p. 370-383.

Khoo, H.P. 1977. The geology of the Sungai Tekai area. Ann. Rep. Geol. Survey Malaysia. pp. 93-103.

Kruseman, G.P. & De Ridder, N.A. 2000. Analysis and Evaluation of Pumping Test Data. 2nd ed. Wageningen, The Netherlands: International Institute for Land Reclamation and Improvement.

Lin, L., Lin, H. & Xu, Y. 2014. Characterisation of fracture network and groundwater preferential flow path in the Table Mountain Group (TMG) sandstones, South Africa. Water SA 40(2): 263-272.

Margolin, G., Berkowitz, B. & Scher, H. 1998. Structure, flow, and generalized conductivity scaling in fracture networks. Water Resources Research 34(9): 2103-2121.

Mohammad, H. & Roslan, N. 2017. Pencirian sifat akuifer dalam batuan granit di Selangor. Sains Malaysiana 46(12): 2331-2338.

Olorunfem, M.O. & Fasuyi, S.A. 1993. Aquifer types and the geoelectric/hydrogeologic characteristics of part of the central basement terrain of Nigeria (Niger State). Journal of African Earth Sciences 16(3): 309-317.

Raghunath, H.M. 2006. Hydrology: Principles, Analysis and Design. New Delhi: New Age International (P) Ltd.

Sheriff, R.E. & Geldart, L.P. 1999. Exploration Seismology. 2nd ed. Cambridge: Cambridge University Press. p. 592.

Silalahi, E., Putri, Y., Sitinjak, R., Miraza, D. & Ozza, M.S.T. 2019. Seismic interpretation and depositional model of Kais-Lower Klasafet Reservoirs in Walio area of Kepala Burung PSC, Salawati Basin, West Papua, Indonesia. In Journal of Physics: Conference Series 1363(1): 012026.

Singhal, B.S.S. & Gupta, R.P. 2010. Applied Hydrogeology of Fractured Rocks. 2nd ed. London: Springer Science+Business Media B.V.

Whiteley, R.J., Hunter, J.A., Pullan, S.E. & Nutalaya, P. 1998. “Optimum offset” seismic reflection mapping of shallow aquifers near Bangkok, Thailand. Geophysics 63(4): 1385-1394.

 

*Corresponding author; email: ahmaddediputra3008@gmail.com

 

 

previous