Sains Malaysiana 51(7)(2022): 2129-2136

http://doi.org/10.17576/jsm-2022-5107-15

 

Interleukin-1b and Interferon-g are Associated with Malaria-Induced Hypoinsulinemic Hypoglycemia in Plasmodium berghei Anka-Infected Mice

(Interleukin-1b dan Interferon-g dikaitkan dengan Hipoglisemia Hipoinsulinemik Mengaruh Malaria pada Tikus yang Dijangkiti Plasmodium berghei Anka)

 

 RUJIKORN RATTANATHAM1,2 & VORAVUTH SOMSAK1,2,*

 

1School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand

2Research Excellence Center for Innovation and Health Products, Walailak University, Nakhon Si Thammarat 80160, Thailand

 

Received: 17 May 2021/Accepted: 30 November 2021

 

Abstract

Malaria-induced hypoglycemia is recognized as a serious complication of malaria and has one of the strongest associations with mortality in children. It has been speculated that oxidative stress and pro-inflammatory response during parasite infection were involved in its pathophysiology. Hence, this study aimed to investigate the development of malaria-induced hypoglycemia during Plasmodium berghei ANKA (PbANKA) infection with particular attention to the involvement of c-peptide, interleukin-1b (IL-1b), and interferon-g (IFN-g). ICR mice were infected with 1×107 parasitized erythrocytes of PbANKA, and parasitemia was monitored, and the development of hypoglycemia was assessed by measuring plasma glucose levels. The change of c-peptide level was evaluated. The pro-inflammatory response of IL-1b and IFN-g were also quantified in plasma. It was found that PbANKA infection resulted in hypoglycemia as indicated by a significantly (P < 0.05) decrease in plasma glucose levels on day 4 post-infection and associated with parasitemia. The c-peptide was slightly increased at day 2 post-infection, and then significantly (P < 0.05) decreased since day 4. Furthermore, we observed a significantly (P < 0.05) increased IL-1b, firstly responded, at day 2 post-infection followed by increasing the IFN-g level at day 4 in PbANKA-induced hypoglycemia. Our findings support the idea that hypoinsulinemic hypoglycemia in the PbANKA infected mice may be involved in the high IL-1b and IFN-g against the parasite infection.

 

Keywords: Hypoglycemia; IFN-g; IL-1b; malaria; Plasmodium berghei

 

Abstrak

Hipoglisemia yang disebabkan oleh malaria dikenali sebagai komplikasi malaria yang serius dan mempunyai salah satu kaitan paling kuat dengan kematian yang berlaku dalam kalangan kanak-kanak. Spekulasi bahawa tekanan oksidatif dan tindak balas pro-radang semasa jangkitan parasit terlibat dengan patofisiologinya. Oleh itu, kajian ini bertujuan untuk mengkaji perkembangan hipoglikemia yang disebabkan oleh malaria semasa jangkitan Plasmodium berghei ANKA (PbANKA) dengan perhatian khusus dilakukan terhadap penglibatan c-peptida, interleukin-1b (IL-1b) dan interferon-g (IFN-g). Tikus ICR telah dijangkiti dengan 1×107 eritrosit parasit PbANKA dan parasitemia dipantau dan perkembangan hipoglikemia dinilai dengan mengukur tahap glukosa pada plasma. Perubahan tahap c-peptida ini dinilai. Tindak balas pro-radang IL-1b dan IFN-g juga dikira pada plasma. Jangkitan PbANKA didapati telah mengakibatkan hipoglikemia dan berlakunya penurunan ketara (P <0.05) dalam paras glukosa plasma pada hari ke-4 selepas jangkitan dan dikaitkan dengan parasitemia. C-peptida meningkat sedikit pada hari ke-2 selepas jangkitan dan kemudian menurun dengan ketara (P <0.05) pada hari ke-4. Seterusnya peningkatan ketara (P <0.05) IL-1b berlaku, yang mula bertindak balas, pada hari ke-2 selepas jangkitan diikuti dengan meningkatkan tahap IFN-g pada hari ke-4 dalam hipoglikemia yang disebabkan oleh PbANKA. Penemuan kajian menyokong idea bahawa hipoglikemia hipoinsulinemia pada tikus yang dijangkiti PbANKA mungkin terlibat dalam peningkatan IL-1b dan IFN-g terhadap jangkitan parasit.

 

Kata kunci: Hipoglisemia; IFN-g; IL-1b; malaria; Plasmodium berghei

 

REFERENCES

Arora, G., Hart, G.T., Manzella-Lapeira, J., Doritchamou, J.Y., Narum, D.L., Thomas, L.M., Brzostowski, J., Rajagopalan, S., Doumbo, O.K., Traore, B. & Miller, L.H. 2018. NK cells inhibit Plasmodium falciparum growth in red blood cells via antibody-dependent cellular cytotoxicity. Elife 7: 36806.

Asmilia, N., Aliza, D., Fahrimal, Y., Abrar, M. & Ashary, S. 2020. Malacca leaf ethanolic extract (Phyllanthus emblica) as a hepatoprotector of the liver of mice (Mus musculus) infected with Plasmodium bergheiVeterinary World 13(7): 1457.

Barlow, J., Solomon, T.P.J. & Affourtit, C. 2018. Pro-inflammatory cytokines attenuate glucose-stimulated insulin secretion from INS-1E insulinoma cells by restricting mitochondrial pyruvate oxidation capacity - Novel mechanistic insight from real-time analysis of oxidative phosphorylation. PLoS ONE 13(6): e0199505-e05.

Barnes, L. 2018. Immunology and Microbiology.  Waltham Abbey, United Kingdom:  Edtech Press.

Boonyapranai, K., Surinkaew, S., Somsak, V. & Rattanatham, R. 2021. Protective effects of Gymnema inodorum leaf extract on Plasmodium berghei-induced hypoglycemia, dyslipidemia, liver damage, and acute kidney injury in experimental mice. Journal of Parasitology Research 2021: 1896997.

del Rey, A. & Besedovsky, H. 1989. Antidiabetic effects of interleukin 1. Proceedings of the National Academy of Sciences of the United States of America 86(15): 5943-5947.

Elased, K. & Playfair, J.H. 1994. Hypoglycemia and hyperinsulinemia in rodent models of severe malaria infection. Infection and Immunity 62(11): 5157-5160.

Fei, H., Zhao, B., Zhao, S. & Wang, Q. 2008. Requirements of calcium fluxes and ERK kinase activation for glucose-and interleukin-1β-induced β-cell apoptosis. Molecular & Cellular Biochemistry 315(1): 75-84.

Franklin, B.S., Parroche, P., Ataíde, M.A., Lauw, F., Ropert, C., de Oliveira, R.B., Pereira, D., Tada, M.S., Nogueira, P., da Silva, L.H.P. & Bjorkbacka, H. 2009. Malaria primes the innate immune response due to interferon-γ induced enhancement of toll-like receptor expression and function. Proceedings of the National Academy of Science 106(14): 5789-5794.

Han, H.S., Kang, G., Kim, J.S., Choi, B.H. & Koo, S.H. 2016. Regulation of glucose metabolism from a liver-centric perspective. Experimental & Molecular Medicine 48(3): e218-e218.

Leighton, E., Sainsbury, C.A. & Jones, G.C. 2017. A practical review of C-peptide testing in diabetes. Diabetes Therapy 8(3): 475-487.

Liehl, P., Meireles, P., Albuquerque, I.S., Pinkevych, M., Baptista, F., Mota, M.M., Davenport, M.P. & Prudêncio, M. 2015. Innate immunity induced by Plasmodium liver infection inhibits malaria reinfections. Infection and Immunity 83(3): 1172-1180.

Madrid, L., Lanaspa, M., Maculuve, S.A. & Bassat, Q. 2015. Malaria-associated hypoglycaemia in children. Expert Review of Anti-Infective Therapy 13(2): 267-277.

Maedler, K., Størling, J., Sturis, J., Zuellig, R.A., Spinas, G.A., Arkhammar, P.O., Mandrup-Poulsen, T. & Donath, M.Y. 2004. Glucose-and interleukin-1β-induced β-cell apoptosis requires Ca2+ influx and extracellular signal-regulated kinase (ERK) 1/2 activation and is prevented by a sulfonylurea receptor 1/inwardly rectifying K+ channel 6.2 (SUR/Kir6. 2) selective potassium channel opener in human islets. Diabetes 53(7): 1706-1713.

Mak, T.W., Saunders, M.E. & Jett, B.D. 2013. Primer to the Immune Response. 2nd ed. AP Cell.

Maniam, P., Hassan, Z.A.A., Embi, N. & Sidek, H.M. 2012. Changes in hepatic phosphoprotein levels in mice infected with Plasmodium berghei. Sains Malaysiana 41(6): 721-729.

Mayer-Barber, K.D. & Yan. B. 2017. Clash of the cytokine titans: Counter-regulation of interleukin-1 and type I interferon-mediated inflammatory responses. Cellular & Molecular Immunology 14(1): 22-35.

Metzger, S., Nusair, S., Planer, D., Barash, V., Pappo, O., Shilyansky, J. & Chajek-Shaul, T. 2004. Inhibition of hepatic gluconeogenesis and enhanced glucose uptake contribute to the development of hypoglycemia in mice bearing interleukin-1β-secreting tumor. Endocrinology 145(11): 5150-5156.

Meyerovich, K., Ortis, F. & Cardozo, A.K. 2018. The non-canonical NF-κB pathway and its contribution to β-cell failure in diabetes. Journal of Molecular Endocrinology 61(2): F1-F6.

Mills, E.L., Kelly, B. & O'Neill, L.A.J. 2017. Mitochondria are the powerhouses of immunity. Nature Immunology 18(5): 488-498.

Nano, E., Petropavlovskaia, M. & Rosenberg, L. 2021. Islet neogenesis associated protein (INGAP) protects pancreatic β cells from IL-1β and IFNγ-induced apoptosis. Cell Death Discovery 7(1): 1-15.

Ogetii, G.N., Akech, S., Jemutai, J., Boga, M., Kivaya, E., Fegan, G. & Maitland, K. 2010. Hypoglycaemia in severe malaria, clinical associations and relationship to quinine dosage. BMC Infectious Diseases 10(1): 1-9.

Ounjaijean, S., Chachiyo, S. & Somsak, V. 2019. Hypoglycemia induced by Plasmodium berghei infection is prevented by treatment with Tinospora crispa stem extract. Parasitology International 68(1): 57-59.

Planche, T. & Krishna, S. 2006. Severe malaria: Metabolic complications. Current Molecular Medicine 6(2): 141-153.

Ramos, S., Carlos, A.R., Sundaram, B., Jeney, V., Ribeiro, A., Gozzelino, R., Bank, C., Gjini, E., Braza, F., Martins, R. & Ademolue, T.W. 2019. Renal control of disease tolerance to malaria. Proceedings of the National Academy of Sciences of the United States of America 116(12): 5681-5686.

Richards, A.L. 1997. Tumour necrosis factor and associated cytokines in the host's response to malaria. International Journal for Parasitology 27(10): 1251-1263.

Roe, J.K. & Pasvol, G. 2009. New developments in the management of malaria in adults. QJM: An International Journal of Medicine 102(10): 685-693.

Roth, E.J. 1990. Plasmodium falciparum carbohydrate metabolism: A connection between host cell and parasite. Blood Cells 16(2-3): 453-466.

Sengupta, A., Ghosh, S., Sharma, S. & Sonawat, H.M. 2020. Early perturbations in glucose utilization in malaria-infected murine erythrocytes, liver and brain observed by metabolomics. Metabolites 10(7): 277.

Shi, J., Fan, J., Su, Q. & Yang, Z. 2019. Cytokines and abnormal glucose and lipid metabolism. Frontiers in Endocrinology 10: 703.

Taverne, J., Sheikh, N., Elased, K. & Playfair, J. 1995. Malaria toxins: Hypoglycaemia and TNF production are induced by different components. Parasitology Today 11(12): 462-463.

Thomas, H.E., Darwiche, R., Corbett, J.A. & Kay, T.W. 2002. Interleukin-1 plus gamma-interferon-induced pancreatic beta-cell dysfunction is mediated by beta-cell nitric oxide production. Diabetes 51(2): 311-316.

Tjhin, E.T., Staines, H.M., Van Schalkwyk, D.A., Krishna, S. & Saliba, K.J. 2013. Studies with the Plasmodium falciparum hexokinase reveal that PfHT limits the rate of glucose entry into glycolysis. FEBS Letters 587(19): 3182-3187.

Tukwasibwe, S., Nakimuli, A., Traherne, J., Chazara, O., Jayaraman, J., Trowsdale, J., Moffett, A., Jagannathan, P., Rosenthal, P.J., Cose, S. & Colucci, F. 2020. Variations in killer-cell immunoglobulin-like receptor and human leukocyte antigen genes and immunity to malaria. Cellular & Molecular Immunology 17(8): 799-806.

Van Niekerk, D.D., Penkler, G.P., du Toit, F. & Snoep, J.L. 2016. Targeting glycolysis in the malaria parasite Plasmodium falciparum. FEBS Journal 283(4): 634-646.

Vogel, S.N., Henricson, B.E. & Neta, R. 1991. Roles of interleukin-1 and tumor necrosis factor in lipopolysaccharide-induced hypoglycemia. Infection and Immunity 59(7): 2494-2498.

White, N.J., Pukrittayakamee, S., Hien, T.T., Faiz, M.A., Mokuolu, O.A. & Dondorp, A.M. 2014. Malaria. Lancet 383(9918): 723-735.

WHO. 2020. World Malaria Report.  Geneva, Switzerland:  World Health Organization.

Zhang, X., Yang, S., Chen, J. & Su, Z. 2019. Unraveling the regulation of hepatic gluconeogenesis. Frontiers in Endocrinology 9(2019): 802.

 

*Corresponding author; email: voravuth.so@wu.ac.th

 

 

 

 

previous