Sains Malaysiana 51(7)(2022): 2295-2304

http://doi.org/10.17576/jsm-2022-5107-28

 

1  

2  

3  

4  

5 #54185

6 Diserahkan: 26/2/2022

7 Diterima: 17/5/2022

8 #54185

9 Diserahkan: 26/2/2022

10 Diterima: 17/5/2022

11 #54185

12 Diserahkan: 26/2/2022

13 Diterima: 17/5/2022

14 #54185

15 Diserahkan: 26/2/2022

16 Diterima: 17/5/2022

17  

Kesan Masa Pendidihan dan Simulasi Pencernaan ke atas Protein dan Hidrolisat Protein yang Dihasilkan daripada Sarang Burung Walit Spesies Aerodramus fuciphagus

(Effects of Boiling Time and Digestion Simulation on Protein and Protein Hydrolisate Produced from Swiftlet Nest Species Aerodramus fuciphagus)

 

NUR ‘ALIAH DAUD1, ABDUL SALAM BABJI1, ‘IZZATI KHALIDAH ZAINAL ABIDIN1, MASITAH MUSLIM1 & SALMA MOHAMAD YUSOP1,2,*

 

1Jabatan Sains Makanan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

2Pusat Inovasi Teknologi Manis, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 28 February 2022/Accepted: 14 April 2022

 

Abstrak

Sarang burung walit (SBW) dengan kandungan manfaat kesihatan yang pelbagai dihasilkan daripada burung walit Aerodramus fuciphagus. Sarang tersebut dihasilkan menggunakan air liur burung walit yang mengandungi bahan glikoprotein yang tinggi. Kajian ini dijalankan untuk menghasilkan hidrolisat protein SBW dan seterusnya menentukan kesan masa pendidihan (0 - 180 minit) dan proses pencernaan ke atas sampel SBW dan hidrolisat protein SBW. Proses hidrolisis berenzim telah dijalankan dengan menggunakan enzim alkalase untuk menghasilkan hidrolisat protein SBW. Ujian pencernaan terhadap protein SBW dan hidrolisat yang dihasilkan telah dijalankan menggunakan simulasi sistem pencernaan manusia in vitro. Hasil kajian menunjukkan dengan peningkatan masa pendidihan sehingga 180 minit, kandungan peptida yang terhasil daripada pendidihan SBW mentah dan hidrolisat adalah berbeza secara signifikan (p<0.05) dengan nilai kandungan peptida daripada SBW mentah terdidih didapati lebih tinggi daripada hidrolisat SBW. Seterusnya, hasil daripada pencernaan protein terhadap SBW dan hidrolisat SBW menunjukkan nilai kandungan peptida yang berbeza secara signifikan (p<0.05) dengan darjah hidrolisis protein SBW didapati paling tinggi (96.55%); diikuti dengan hidrolisat SBW 60 minit (88.69%), 120 minit (89.32%) dan 180 minit (89.81%) yang tidak berbeza secara signifikan (p<0.05) antara sampel. Hasil kajian ini menunjukkan SBW didegradasi secara aktif dalam masa 30 minit pendidihan berbanding hidrolisat SBW. Perbezaan tersebut menjelaskan bahawa komponen protein pada hidrolisat SBW telah banyak dicernakan oleh tindak balas hidrolisis berenzim dalam penyediaan hidrolisat tersebut. Proses pencernaan in vitro pula menunjukkan bahawa protein SBW dan hidrolisatnya adalah protein makanan yang boleh dicernakan dengan baik oleh sistem pencernaan manusia.

 

Kata kunci: Hidrolisis berenzim; keterlarutan; pencernaan in vitro; protein; sarang burung walit

 

Abstract

Edible swiftlet nest (ESN) with a diverse content of health benefits is produced from swiftlets of Aerodramus fuciphagus. The nest is produced using the swiftlet’s saliva which contains high glycoprotein. This study was conducted to produce ESN protein hydrolysate and further determine the effect of boiling time (0 - 180 minutes) and digestion process on ESN samples and ESN protein hydrolysate. The enzymatic hydrolysis process was carried out using alcalase enzymes to produce ESN protein hydrolysate. Digestive tests on the ESN protein and hydrolysates produced were carried out using the simulations of in vitro human digestive system. Results showed that with increasing boiling time up to 180 minutes, the peptide content produced from boiled raw ESN and ESN hydrolysate was significantly different (p<0.05), with the ESN peptide content from boiled raw ESN was observed to be higher than ESN hydrolysate. Furthermore, protein digestion results for ESN and ESN hydrolysate showed significantly different peptide content values (p<0.05), with ESN having the highest degree of protein hydrolysis at 96.55%; followed by ESN hydrolysate of 60 minutes (88.69%), 120 minutes (89.32%), and 180 minutes (89.81%) which did not differ significantly among the sample. The findings of this study showed that ESN has been actively degraded within 30 minutes of boiling as compared to ESN hydrolysate. The difference explains that the protein component of ESN hydrolysate has been extensively digested by the enzymatic hydrolysis reaction during the preparation of the hydrolysate. The in vitro digestion process showed that the ESN protein and its hydrolysate are food proteins that can be well-digested by the human digestive system.

 

Keywords: Enzymatic hydrolysis; in vitro digestion; protein; solubility; swiftlet nest

 

REFERENCES

Arihara, K. 2006. Functional properties of bioactive peptides derived from meat proteins. In Advanced Technologies for Meat Processing. Boca Raton: CRC Press. hlm. 245-274.

Babji, A.S. & Daud, N.A. 2019. Physicochemical properties of glycan within swiftlet's nest (Aerodramus fuciphagus) as potential prebiotic. ACTA Scientific Medical Sciences 3: 09-13.

Babji, A.S., Syarmila, E.I., Daud, N.A., Muhammad, N.N., Dahlan, H.A., Norrakiah, A.S., Ghassem, M., Najafian, L. & Yusop, S.M. 2018. Assessment on bioactive components of hydrolysed edible bird nest. International Food Research Journal 25: 1936-1941.

Berrill, A., Biddlecombe, J. & Bracewell, D. 2011. Product quality during manufacture and supply. In Peptide and Protein Delivery, edited by Van Der Walle, C. Massachusetts: Academic Press. hlm. 313-339.

Bloom, K.A., Huang, F.R., Bencharitiwong, R., Bardina, L., Ross, A., Sampson, H.A. & Anna, N. 2014. Effect of heat treatment on milk and egg proteins allergenicity. Pediatric Allergy and Immunology 25: 740-746.

Bohn, T., Carriere, F., Day, L., Deglaire, A., Egger, L., Freitas, D., Golding, M., Le Feunteun, S., Macierzanka, A., Ménard, O., Miralles, B., Moscovici, A., Portmann, R., Recio, I., Rémond, D., Santé-Lhoutelier, V., Wooster, T.J., Lesmes, U., Mackie, A.R. & Dupont, D. 2018. Correlation between in vitro and in vivo data on food digestion. What can we predict with static in vitro digestion models? Critical Reviews in Food Science and Nutrition 58: 2239-2261.

18 models?

Bottari, B., Quartieri, A., Prandi, B., Raimondi, S., Leonardi, A., Rossi, M., Ulrici, A., Gatti, M., Sforza, S., Nocetti, M. & Amaretti, A. 2017. Characterization of the peptide fraction from digested Parmigiano Reggiano cheese and its effect on growth of lactobacilli and bifidobacteria. International Journal of Food Microbiology 255: 32-41.

Boyd, C.E. 2015. pH, carbon dioxide, and alkalinity. In Water Quality. Springer, Cham. hlm. 153-178.

Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254.

Caballero, B., Trugo, L.C. & Finglas, P.M. 2003. Encyclopedia of Food Sciences and Nutrition. Massachusetts: Academic Press.

Chua, K.H., Mohamed, I.N., Mohd Yunus, M.H., Shafinaz Md Nor, N., Kamil, K., Ugusman, A. & Kumar, J. 2021. The anti-viral and anti-inflammatory properties of Edible Bird’s nest in influenza and coronavirus infections: From pre-clinical to potential clinical application. Frontiers in Pharmacology 12: 633292.

Church, F.C., Swaisgood, H.E., Porter, D.H. & Catignani, G.L. 1983. Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. Journal of Dairy Science 66: 1219-1227.

Cui et al. 2021

Daud, N.A., Mohamad Yusop, S., Babji, A.S., Lim, S.J., Sarbini, S.R. & Hui Yan, T. 2021. Edible bird’s nest: Physicochemical properties, production, and application of bioactive extracts and glycopeptides. Food Reviews International 37: 177-196.

Daud, N.A., Sarbini, S.R., Babji, A.S., Mohamad Yusop, S. & Lim, S.J. 2019. Characterization of edible swiftlet’s nest as a prebiotic ingredient using a simulated colon model. Annals of Microbiology 69: 1235-1246.

Gil-Izquierdo, A., Zafrilla, P. & Tomás-Barberán, F.A. 2002. An in vitro method to simulate phenolic compound release from the food matrix in the gastrointestinal tract. European Food Research and Technology 214: 155-159.

Guo, C.T., Takahashi, T., Bukawa, W., Takahashi, N., Yagi, H., Kato, K., Kazuya, I.P., Miyamoto, D., Suzuki, T. & Suzuki, Y. 2006. Edible bird's nest extract inhibits influenza virus infection. Antiviral Research 70: 140-146.

Hur, S.J., Lim, B.O., Decker, E.A. & McClements, D.J. 2011. In vitro human digestion models for food applications. Food Chemistry 125: 1-12.

Jamalluddin, N.H., Tukiran, N.A., Fadzillah, N.A. & Fathi, S. 2019. Overview of edible bird's nests and their contemporary issues. Food Control 104: 247-255.

Kathan, R.H. & Weeks, D.I. 1969. Structure studies of collocalia mucoid: I. Carbohydrate and amino acid composition. Archives of Biochemistry and Biophysics 134: 572-576.

López-Sánchez, J., Ponce-Alquicira, E., Pedroza-Islas, R., De la Peña-Díaz, A. & Soriano-Santos, J. 2016. Effects of heat and pH treatments and in vitro digestion on the biological activity of protein hydrolysates of Amaranthus hypochondriacus L. grain. Journal of Food Science and Technology 53: 4298-4307.

Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., Carrière, F., Boutrou, R., Corredig, M., Dupont, D., Dufour, C., Egger, L., Golding, M., Karakaya, S., Kirkhus, B., Le Feunteun, S., Lesmes, U., Macierzanka, A., Mackie, A., Marze, S., McClements, D.J., Ménard, O., Recio, I., Santos, C.N., Singh, R.P., Vegarud, G.E., Wickham, M.S.J., Weitschies, W. & Brodkorb, A. 2014. A standardised static in vitro digestion method suitable for food - An international consensus. Food and Function 5: 1113-1124.

19 consensus

Mohd Khan, A., Etty Syarmila, I.K., Nurfatin, M.H., Farahniza, Z., Engku Hanisah, E.U., Norhasidah, S., Masitah, E.H., Masturah, A.K., Nurul’Ain, M., Maaruf, A.G. & Abdul Salam, B. 2014. Antioxidative property of ready-to-drink products incorporated with enzymatically hydrolysed edible bird nest. Edible Bird Nest Industry Conference, 25-26 November, Marriot Hotel, Putrajaya, Malaysia.

Morais, H.A., Silvestre, M.P.C., Silva, V.D.M., Silva, M.R., e Silva, A.C.S. & Silveira, J.N. 2013. Correlation between the degree of hydrolysis and the peptide profile of whey protein concentrate hydrolysates: Effect of the enzyme type and reaction time. American Journal of Food Technology 8(1): 1-16.

Norhayati, M.K., Azman, O. & Nazaimoon, W.N. 2010. Preliminary study of the nutritional content of Malaysian edible bird's nest. Malaysian Journal of Nutrition 16: 389-396.

Nurfatin, M.H., Syarmila, I.E., Daud, N.A., Zalifah, M.K., Babji, A.S. & Ayob, M.K. 2016. Effect of enzymatic hydrolysis on Angiotensin converting enzyme (ACE) inhibitory activity in swiftlet saliva. International Food Research Journal 23: 141-146.

Nurul Nabilah Huda Mohamad Shukri, N.M. Nawi, Amin Mahir Abdullah & Norsida Man. 2018. Consumer’s perception on the quality of controversial contents in edible bird’s nest products. Pertanika Journal of Scholarly Research Reviews 4(1): 1-9.

Nurul Nadia, M., Babji, A.S., Ayub, M.K. & Nur‘Aliah, D. 2017. Effect of enzymatic hydrolysis on antioxidant capacity of cave edible bird’s nests hydrolysate. International Journal ChemTech Research 10(2): 1100-1107.

Ramachandran, R., Babji, A.S. & Wong, P. 2017. Effect of heating on antioxidant activity on edible bird nest. In 7th International Seminar on Tropical Animal Production. Contribution of Livestock Production on Food Sovereignity in Tropical Countries, September 12-14, Yogyakarta, Indonesia. hlm. 380-386.

Rutherfurd, S.M. 2019. Methodology for determining degree of hydrolysis of proteins in hydrolysates: A review. Journal of AOAC International 93: 1515-1522.

Smialowski, P., Martin-Galiano, A.J., Mikolajka, A., Girschick, T., Holak, T.A. & Frishman, D. 2007. Protein solubility: Sequence based prediction and experimental verification. Bioinformatics 23(19): 2536-2542.

Tang, C.H., Wang, X.S. & Yang, X.Q. 2009. Enzymatic hydrolysis of hemp (Cannabis sativa L.) protein isolate by various proteases and antioxidant properties of the resulting hydrolysates. Food Chemistry 114: 1484-1490.

Tapia, M.S., Alzamora, S.M. & Chirife, J. 2020. Effects of water activity (aw) on microbial stability as a hurdle in food preservation. In Water Activity in Foods: Fundamentals and Applications. 2nd ed., edited by Barbosa-Cánovas, G.V., Fontana Jr., A.J., Schmidt, S.J. & Labuza, T.P. New Jersey: John Wiley & Sons. hlm. 323-355.

Tarafdar, A., Shahi, N.C., Singh, A. & Sirohi, R. 2018. Artificial neural network modeling of water activity: A low energy approach to freeze drying. Food and Bioprocess Technology 11: 164-171.

Tung, C.H., Pan, J.Q., Chang, H.M. & Chou, S.S. 2008. Authentic determination of bird's nests by Saccharides profile. Journal of Food and Drug Analysis 16: 86-91.

Yida, Z., Imam, M.U. & Ismail, M. 2014. In vitro bioaccessibility and antioxidant properties of edible bird’s nest following simulated human gastro-intestinal digestion. BMC Complementary and Alternative Medicine 14: 468.

Zhang, C., Wang, Z., Li, Y., Yang, Y., Ju, X. & He, R. 2019. The preparation and physiochemical characterization of rapeseed protein hydrolysate-chitosan composite films. Food Chemistry 272: 694-701.

 

*Corresponding author; email: salma_my@ukm.edu.my

 

   

previous