Sains Malaysiana 50(11)(2021): 3395-3404



Performance Evaluation of PDMS or PEBAX- Coated Polyetherimide Membrane for Oxygen/Nitrogen Separation

(Penilaian Prestasi PDMS atau PEBAX- Bersalut Membran Polieterimida untuk Pemisahan Oksigen/Nitrogen)




1Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor Darul Ehsan, Malaysia


2Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim, Malaysia


Diserahkan: 25 Mei 2020/Diterima: 8 Mac 2021



Since the industrial revolution era, the Earth was suffering from serious air pollution. Millions of people are now suffering from indoor air pollution related diseases, especially in the industrialized countries such as China. One method to improve the indoor air quality is by oxygen enhancement. Membrane technology has been a key research over the past decades due to its low energy usage, minimum chemical consumption as well as small setting up layout. In this study, polyetherimide (PEI) membranes coated with polydimethylsiloxane (PDMS) or poly(ether block amide) (PEBAX) at different concentration (1, 3 or 5 wt%) were used to evaluate the oxygen/nitrogen gas separation. Prior to the gas permeation study, the membranes were characterized using scanning electron microscope (SEM) for morphology observation and surface elemental analysis by energy dispersive X-ray spectroscope (EDX). The morphology of the self-fabricated PEI membranes is composed of a thin and dense structure supported by the finger-like structure. The results obtained from oxygen/nitrogen separation studies shows membrane coated with 3 wt% PDMS yield a good separation results, exhibiting an improvement of oxygen and nitrogen permeance by 28.2% and 24.9%, selectivity by 10.4% (up to 5.08) relative to the base PEI membrane. Meanwhile, the 3 wt% PEBAX-coated PEI membrane only achieved selectivity of 3.56. The PDMS-coated PEI membrane yield a better separation performance attributed to the fact that PDMS coating on the hollow fiber membrane improve the surface morphology by reducing the defects.


Keywords: Gas separation; nitrogen; oxygen; polydimethylsiloxane; polyetherimide; poly(ether block amide)



Sejak era revolusi perindustrian, Bumi mengalami pencemaran udara yang serius. Berjuta-juta orang kini menderita penyakit berkaitan pencemaran udara dalaman, terutamanya mereka yang tinggal di negara perindustrian seperti China. Salah satu kaedah untuk meningkatkan kualiti udara dalaman adalah dengan peningkatan oksigen. Teknologi membran telah menjadi penyelidikan utama selama beberapa dekad yang lalu kerana penggunaan tenaga yang rendah, kadar penggunaan bahan kimia yang minimum dan menggunakan ruang yang kecil. Dalam kajian ini, membran polieterimida (PEI) yang disalut dengan polidimetilsiloksan (PDMS) atau poli(eter blok amida) (PEBAX) pada kepekatan yang berbeza (1, 3 atau 5 wt%) digunakan untuk menilai pemisahan gas oksigen/nitrogen. Sebelum kajian penelapan gas, membran dicirikan menggunakan mikroskop elektron imbasan (SEM) untuk pemerhatian morfologi dan analisis unsur permukaan dengan spektroskopi sinar-X penyebaran tenaga (EDX). Morfologi membran PEI buatan sendiri terdiri daripada struktur nipis dan padat yang disokong oleh struktur seperti jari. Hasil penyerapan gas menunjukkan bahawa membran yang dilapisi dengan 3% PDMS adalah membran yang terbaik dengan kadar peningkatan oksigen dan nitrogen sebanyak 28.2% dan 24.9% serta peningkatan kepilihan sebanyak 10.4% (hingga 5.08) berbanding dengan membran PEI yang tidak bersalut. Sementara itu, membran PEI bersalut PEBAX 3% hanya mencapai kepilihan sebanyak 3.56. Membran PEI yang disalut PDMS menghasilkan prestasi pemisahan yang lebih baik disebabkan oleh fakta bahawa lapisan PDMS dapat memperbaiki morfologi permukaan membran dengan mengurangkan kecacatan.


Kata kunci: Nitrogen; oksigen; pemisahan gas; polieterimida; polidimetilsiloksan; poli(eter blok amida)



Al-Horr, Y., Arif, M., Katafygiotou, M., Mazroei, A., Kaushik, A. & Elsarrag, E. 2016. Impact of indoor environmental quality on occupant well-being and comfort: A review of the literature. International Journal of Sustainability Built Environment 5(1): 1-11.

Baskar, P. & Senthilkumar, A. 2016. Effects of oxygen enriched combustion on pollution and performance characteristics of a diesel engine. International Journal of Science and Technology 19(1): 438-443.

Belaissaoui, B., Le Moullec, Y., Hagi, H. & Favre, E. 2014. Energy efficiency of oxygen enriched air production technologies: Cryogeny vs membranes. Energy Procedia 63: 497-503.

Chong, K.C., Lai, S.O., Lau, W.J., Thiam, H.S., Ismail, A.F. & Roslan, R.R. 2018. Preparation, characterization, and performance evaluation of polysulfone hollow fiber membrane with PEBAX or PDMS coating for oxygen enhancement process. Polymers 10(2): 126.

Chong, K.C., Lai, S.O., Lau, W.J., Thiam, H.S., Ismail, A.F. & Zulhairun, A.K. 2017. Fabrication and characterization of polysulfone membranes coated with polydimethysiloxane for oxygen enrichment. Aerosol Air Quality Research 17(11): 2735-2742.

Chong, K.C., Lai, S.O., Lee, K.M., Lau, W.J., Ismail, A.F. & Ooi, B.S. 2014. Characteristic and performance of polyvinylidene fluoride membranes blended with different additives in direct contact membrane distillation. Desalination Water Treatment 54(12): 3218-3226.

Esposito, E., Clarizia, G., Bernardo, P., Jansen, J., Sedláková, Z. & Izák, P. 2015. Pebax®/PAN hollow fiber membranes for CO2/CH4 separation. Chemical Engineering Process 94: 53-61.

Gordon, S., Mortimer, K., Grigg, J. & Balmes, J. 2017. In control of ambient and household air pollution - how low should we go? Lancet Respiratory Medicine 17: 1-2.

Jamil, N., Othman, N.H., Shahrudin, M.Z., Razlan, M.R.M., Alias, N.H., Marpani, F., Lau, W.J., Goh, P.S. & Ismail, A.F. 2020. Effects of PEBAX coating concentrations on CO2/CH4 separation of RGO/ZIF-8 PES membranes. Jurnal Teknologi 82(2): 51-60.

Karar, H.W. & Hamdi, A. 2016. Analysis of the factors that affect medical oxygen demand an empirical study at government Hospitals in Khartoum State. IOSR Journal of Mathematics 12: 22-26.

Khalilinejad, I., Sanaeepur, H. & Kargari, A. 2015. Preparation of poly(ether-6-block amide)/PVC thin film composite membrane for CO2 separation: Effect of top layer thickness and operating parameters. Journal of Membrane Science Research 1: 124-129.

Khayet, M., García-Payo, M., Qusay, F. & Zubaidy, M. 2009. Structural and performance studies of poly(vinyl chloride) hollow fiber membranes prepared at different air gap lengths. Journal of Membrane Science 330(1-2): 30-39.

Kim, K., Ingole, P., Kim, J. & Lee, H. 2013. Separation performance of PEBAX/PEI hollow fiber composite membrane for SO2/CO2/N2 mixed gas. Chemical Engineering Journal 233: 242-250.

Liu, L., Chakma, A. & Feng, X. 2005. CO2/N2 separation by poly(ether block amide) thin film hollow fiber composite membranes. Industrial & Engineering Chemical Research 44(17): 6874-6882.

Moaddeb, M. & Koros, W. 1997. Occlusion of pores of polymeric membranes with colloidal silica. Journal of Membrane Science 136(1-2): 273-277.

Moradi, M., Pourafshari, C.M., Noie, S., Hesampour, M. & Mänttäri, M. 2017. PDMS coating of used TFC-RO membranes for O2/N2 and CO2/N2 gas separation applications. Polymer Testing 63: 101-109.

Pokhrel, J., Bhoria, N., Anastasiou, S., Tsoufis, T., Gournis, D., Romanos, G. & Karanikolos, N. 2018. CO2 adsorption behavior of amine-functionalized ZIF-8, graphene oxide, and ZIF-8/graphene oxide composites under dry and wet conditions. Microporous and Mesoporous Materials 267: 53-67.

Rackley, S.A. 2010. Carbon Capture and Storage. 1st ed. Massachusetts: Butterworth-Heinemann.

Rezaei, A.M., Ismail, A.F., Matsuura, T., Ng, B. & Abdullah, M. 2015. Fabrication and characterization of porous polyetherimide/montmorillonite hollow fiber mixed matrix membranes for CO2 absorption via membrane contactor. Chemical Engineering Journal 269: 51-59.

Robeson, L. 2008. The upper bound revisited. Journal of Membrane Science 320(1-2): 390-400.

Robeson, L., Liu, Q., Freeman, B. & Paul, D. 2015. Comparison of transport properties of rubbery and glassy polymers and the relevance to the upper bound relationship. Journal of Membrane Science 476: 421-431.

Sanders, D., Smith, Z., Guo, R., Robeson, L., McGrath, J. & Paul, D. 2013. Energy-efficient polymeric gas separation membranes for a sustainable future: A review. Polymer 54(18): 4729-4761.

Santos, J., Cruz, P., Regala, T., Magalhães, F. & Mendes, A. 2007. High-purity oxygen production by pressure swing adsorption. Industrial & Engineering Chemistry Research 46(2): 591-599.

Sircar, S. & Kratz, W. 1989. Oxygen production by pressure swing adsorption. Separation Science and Technology 24(5-6): 429-440.

Smith, A. & Klosek, J. 2001. A review of air separation technologies and their integration with energy conversion processes. Fuel Process Technology 70(2): 115-134.

Wahab, M., Ismail, A.F. & Shilton, S. 2012. Studies on gas permeation performance of asymmetric polysulfone hollow fiber mixed matrix membranes using nanosized fumed silica as fillers. Separation and Purification Technology 86: 41-48.

Wang, D. 2000. Porous PVDF asymmetric hollow fiber membranes prepared with the use of small molecular additives. Journal of Membrane Science 178(1-2): 13-23.

Wang, D., Li, K. & Teo, W. 1998. Preparation and characterization of polyetherimide asymmetric hollow fiber membranes for gas separation. Journal of Membrane Science 138(2): 193-201.

Wang, L., Li, Y., Li, S., Ji, P. & Jiang, C. 2014. Preparation of composite poly(ether block amide) membrane for CO2 capture. Journal of Energy Chemistry 23(6): 717-725.

Zhou, Y., Chen, W., Wang, P. & Zhang, Y. 2018. Dense and thin 13X membranes on porous α-Al2O3 tubes: Preparation, structure and deep purification of oxygenated compounds from gaseous olefin flow. RSC Advance 8(25): 13728-13738.

Zuo, J., Ji, W., Ben, Y., Hassan, M., Fan, W. & Bates, L. 2018. Using big data from air quality monitors to evaluate indoor PM2.5 exposure in buildings: Case study in Beijing. Environmental Pollution 240: 839-847.


*Pengarang untuk surat-menyurat; email: