Sains Malaysiana 50(12)(2021): 3667-3681


Proteomic Profile Mapping and Differential Expression of Protein in Ovarian Cancer

(Pemetaan Profil Proteomik dan Ungkapan Pembezaan Protein dalam Kanser Ovari)




1Department of Physiology and Cell Biology, University of Health Sciences, Lahore, Pakistan


2School of Medical Sciences, Faculty of Medicine and Health, Sydney University, Australia


3School of Biological Sciences, University of the Punjab, Lahore, Pakistan


Diserahkan: 30 Januari 2021/Diterima: 30 Mac 2021



This study aimed to characterize differentially expressed proteins in malignant ovarian tissue to find out potential novel biomarkers in ovarian cancer (OC). We enrolled 20 ovarian cancer patients (40-65 years) and an equal number of age-matched healthy women to get malignant and healthy ovarian tissue samples for protein extraction and quantification after tissue lysis. The protein profile was analyzed using two-dimensional gel electrophoresis followed by MALDI-TOF mass spectrometry. Based on the information thus obtained, the proteins were identified using the relevant software and protein databank to analyze the malignant and non-malignant ovarian tissue samples (n = 20/group). In this proteomic analysis of the ovarian tissue, 112 proteins were detected. Based on a minimum of ≥ 1.5-fold expression difference (p-value ≤ 0.05; FDR ≤ 0.05 and PMF ≥ 79), 17 proteins were found to be upregulated while 27 were downregulated in the malignant ovarian tissue. Six of these proteins have not been previously reported in ovarian cancer. Out of these, three are upregulated while the other three are downregulated. The upregulated proteins are centrosomal protein of 290 kDa (Cep290), uncharacterized protein C1orf109 (C1orf109) and GTPase-activating Rap/Ran-GAP domain-like protein 3 (GARNL3), and the three downregulated proteins identified are actin-related protein 3 (ARP3), cytosolic carboxypeptidase 3 (AGBL3) and NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 10 (NDUFA10). This proteomic mapping not only provides data on protein profiling of ovarian cancer in Pakistani population for the first time but also reports six novel differentially expressed proteins, which have not been previously reported in ovarian cancer patients. They may serve as potential novel biomarkers after further validation for early diagnosis and prognosis of ovarian cancer. It also provides additional data to improve existing knowledge of already reported protein ovarian cancer biomarkers.


Keywords: Mass spectrometry; ovarian cancer; proteomics; two-dimensional gel electrophoresis



Kajian ini bertujuan untuk mencirikan protein yang diekspreskan secara berbeza dalam tisu ovari ganas untuk mengetahui potensi penanda biologi baru dalam barah ovari (OC). Kami mendaftarkan 20 pesakit barah ovari (40-65 tahun) dan sebilangan wanita sihat yang sesuai dengan usia untuk mendapatkan sampel tisu ovari yang ganas dan sihat untuk pengambilan dan pengukuran protein setelah lisis tisu. Profil protein dianalisis menggunakan elektroforesis gel berdimensi dua diikuti dengan jisim spektrometri MALDI-TOF. Berdasarkan maklumat yang diperoleh, protein dikenal pasti menggunakan perisian dan pangkalan data protein yang relevan untuk menganalisis sampel tisu ovari yang ganas dan tidak ganas (n = 20/kumpulan). Dalam analisis proteomik tisu ovari ini, 112 protein dikesan. Berdasarkan perbezaan ekspresi minimum ≥ 1.5 gandaan perbezaan ungkapan (nilai p ≤ 0.05; FDR ≤ 0.05 dan PMF ≥ 79), 17 protein didapati diatur secara berlebihan sementara 27 diatur dengan lebih rendah pada tisu ovari malignan. Enam daripada protein ini belum pernah dilaporkan terkena kanser ovari. Daripada jumlah tersebut, tiga diatur lebih tinggi, sementara tiga yang lain diatur. Protein yang diatur adalah protein sentrosom 290 kDa (Cep290), protein C1orf109 yang tidak dicirikan (C1orf109 dan protein seperti domain 3/Rap-Ran-GAP yang mengaktifkan GTPase (GARNL3) dan tiga protein yang tidak terkawal yang dikenal pasti adalah protein yang berkaitan dengan aktin 3 (ARP3), sitosolik karboksipeptidase 3 (AGBL3) dan NADH dehidrogenase [ubiquinone] 1 subkompleks subunit alpha 10 (NDUFA10). Pemetaan proteomik ini tidak hanya memberikan data mengenai profil protein kanser ovari pada populasi Pakistan untuk pertama kalinya, tetapi juga melaporkan enam protein yang dinyatakan secara berbeza, yang sebelumnya tidak pernah dilaporkan pada pesakit barah ovari. Mereka boleh menjadi penanda biologi baru yang berpotensi setelah pengesahan lebih lanjut untuk diagnosis awal dan prognosis kanser ovari. Ia juga memberikan data tambahan untuk meningkatkan pengetahuan sedia ada mengenai penanda biologi kanser ovari protein yang sudah dilaporkan.


Kata kunci: Elektroforesis gel berdimensi dua; jisim spektrometri; kanser ovari; proteomik



Badar, F. & Mahmood, S. 2017. Epidemiology of cancers in Lahore, Pakistan, among children, adolescents and adults, 2010-2012: A cross-sectional study part 2. BMJ Open 7(12): e016559. doi:10.1136/bmjopen-2017-016559.

Bast, R.C., Badgwell, D., Lu, Z., Marquez, R., Rosen, D., Liu, J. & Lu, K. 2005. New tumor markers: CA125 and beyond. International Journal of Gynecologic Cancer 15(Suppl 3):  274. doi:10.1136/ijgc-00009577-200511001-00015.

Bhurgri, Y., Shaheen, Y., Kayani, N., Nazir, K., Ahmed, R., Usman, A. & Zaidi, S.M. 2011. Incidence, trends and morphology of ovarian cancer in Karachi (1995-2002). Asian Pacific Journal of Cancer Prevention 12(6): 1567-1571.

Boveri, T. 2008. Concerning the origin of malignant tumours by Theodor Boveri. Translated and annotated by Henry Harris. Journal of Cell Science 1(Suppl 1): 1-84. doi:10.1242/jcs.025742.

Cheng, Y., Liu, C., Zhang, N., Wang, S. & Zhang, Z. 2014. Proteomics analysis for finding serum markers of ovarian cancer. BioMed Research International 2014: 179040. doi:10.1155/2014/179040.

Cortesi, L., Rossi, E., Casa, L.D., Barchetti, A., Nicoli, A., Piana, S. & Iannone, A. 2011. Protein expression patterns associated with advanced stage ovarian cancer. Electrophoresis 32(15): 1992-2003. doi:

Diz, A.P., Carvajal-Rodríguez, A. & Skibinski, D.O.F. 2011. Multiple hypothesis testing in proteomics: a strategy for experimental work. Molecular Cellular Proteomics 10(3): M110.004374. doi:10.1074/mcp.M110.004374.

Dou, P., Li, Y., Sun, H., Xie, W., Zhang, X., Zhang, X. & Li, Y. 2020. C1orf109L binding DHX9 promotes DNA damage depended on the R-loop accumulation and enhances camptothecin chemosensitivity. Cell Proliferation 53(9): e12875. doi:10.1111/cpr.12875.

Fujii, J. & Ikeda, Y. 2002. Advances in our understanding of peroxiredoxin, a multifunctional, mammalian redox protein. Redox Report 7(3): 123-130. doi:10.1179/135100002125000352.

Gagné, J.P., Gagné, P., Hunter, J.M., Bonicalzi, M.E., Lemay, J.F., Kelly, I. & Poirier, G.G. 2005. Proteome profiling of human epithelial ovarian cancer cell line TOV-112D. Molecular and Cellular Biochemistry 275(1-2): 25-55. doi:10.1007/s11010-005-7556-1.

Girolimetti, G., Perrone, A.M., Santini, D., Barbieri, E., Guerra, F., Ferrari, S. & Turchetti, D. 2014. BRCA-associated ovarian cancer: From molecular genetics to risk management. BioMed Reserach International 2014: 787143. doi:10.1155/2014/787143.

Hashmi, A.A., Hussain, Z.F., Bhagwani, A.R., Edhi, M.M., Faridi, N., Hussain, S.D. & Khan, M. 2016. Clinicopathologic features of ovarian neoplasms with emphasis on borderline ovarian tumors: An institutional perspective. BMC Research Notes 9: 205. doi:10.1186/s13104-016-2015-5.

Homburg, R. 2008. Polycystic ovary syndrome. Best Practice & Research: Clinical Obstetrics & Gynaecology 22(2): 261-274. doi:10.1016/j.bpobgyn.2007.07.009.

Hurst, V., Shimada, K. & Gasser, S.M. 2019. Nuclear actin and actin-binding proteins in DNA repair. Trends Cell Biol. 29(6): 462-476. doi:10.1016/j.tcb.2019.02.010.

Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., Murray, T. & Thun, M.J. 2008. Cancer statistics, 2008. CA: A Cancer Journal for Clinicians 58(2): 71-96. doi:10.3322/ca.2007.0010.

Kozak, K.R., Su, F., Whitelegge, J.P., Faull, K., Reddy, S. & Farias-Eisner, R. 2005. Characterization of serum biomarkers for detection of early stage ovarian cancer. Proteomics 5(17): 4589-4596. doi:10.1002/pmic.200500093.

Le Page, C., Provencher, D., Maugard, C.M., Ouellet, V. & Mes-Masson, A.M. 2004. Signature of a silent killer: Expression profiling in epithelial ovarian cancer. Expert Review of Molecular Diagnostics 4(2): 157-167. doi:10.1586/14737159.4.2.157.

Liu, S.S., Zheng, H.X., Jiang, H.D., He, J., Yu, Y., Qu, Y.P. & Li, Y. 2012. Identification and characterization of a novel gene, C1orf109, encoding a CK2 substrate that is involved in cancer cell proliferation. Journal of Biomedical Science 19(1): 49. doi:10.1186/1423-0127-19-49.

Momenimovahed, Z., Tiznobaik, A., Taheri, S. & Salehiniya, H. 2019. Ovarian cancer in the world: Epidemiology and risk factors. International Journal Womens Health 11: 287-299. doi:10.2147/IJWH.S197604.

Moradi, P., Davies, W.L., Mackay, D.S., Cheetham, M.E. & Moore, A.T. 2011. Focus on molecules: Centrosomal protein 290 (CEP290). Experimental Eye Research 92(5): 316-317. doi:10.1016/j.exer.2010.05.009.

Morita, A., Miyagi, E., Yasumitsu, H., Kawasaki, H., Hirano, H. & Hirahara, F. 2006. Proteomic search for potential diagnostic markers and therapeutic targets for ovarian clear cell adenocarcinoma. Proteomics 6(21): 5880-5890. doi:10.1002/pmic.200500708.

Mostafa, M.F., El-Etreby, N. & Awad, N. 2012. Retrospective analysis evaluating ovarian cancer cases presented at the clinical oncology department, Alexandria University. Alexandria Journal of Medicine 48(4): 353-360.

North, S.J., Jang-Lee, J., Harrison, R., Canis, K., Ismail, M.N., Trollope, A. &  Haslam, S.M. 2010. Mass spectrometric analysis of mutant mice. Methods in Enzymology 478: 27-77. doi:10.1016/s0076-6879(10)78002-2.

Razi, S., Ghoncheh, M., Mohammadian-Hafshejani, A., Aziznejhad, H., Mohammadian, M. & Salehiniya, H. 2016. The incidence and mortality of ovarian cancer and their relationship with the Human Development Index in Asia. Ecancermedicalscience 10: 628. doi:10.3332/ecancer.2016.628.

Stead, D.A., Preece, A. & Brown, A.J. 2006. Universal metrics for quality assessment of protein identifications by mass spectrometry. Molecular Cellular Proteomics 5(7): 1205-1211. doi:10.1074/mcp.M500426-MCP200.

Stierum, R., Gaspari, M., Dommels, Y., Ouatas, T., Pluk, H., Jespersen, S. & Ommen, B.V. 2003. Proteome analysis reveals novel proteins associated with proliferation and differentiation of the colorectal cancer cell line Caco-2. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1650(1-2): 73-91. doi:10.1016/s1570-9639(03)00204-8.

Teh, M.T., Gemenetzidis, E., Patel, D., Tariq, R., Nadir, A., Bahta, A.W. & Hutchison, I.L. 2012. FOXM1 induces a global methylation signature that mimics the cancer epigenome in head and neck squamous cell carcinoma. PLoS ONE 7(3): e34329. doi:10.1371/journal.pone.0034329.

Visintin, I., Feng, Z., Longton, G., Ward, D.C., Alvero, A.B., Lai, Y. & Mor, G. 2008. Diagnostic markers for early detection of ovarian cancer. Clinical Cancer Research 14(4): 1065-1072. doi:10.1158/1078-0432.Ccr-07-1569.

Wang, L.L., Jin, X.H., Cai, M.Y., Li, H.G., Chen, J.W., Wang, F.W. & Xie, D. 2018. AGBL2 promotes cancer cell growth through IRGM-regulated autophagy and enhanced Aurora A activity in hepatocellular carcinoma. Cancer Letter 414: 71-80. doi:10.1016/j.canlet.2017.11.003.

Zhang, H., Ren, Y., Pang, D. & Liu, C. 2014. Clinical implications of AGBL2 expression and its inhibitor latexin in breast cancer. World J. Surg. Oncol. 12: 142. doi:10.1186/1477-7819-12-142.


*Pengarang untuk surat-menyurat; email: