Sains Malaysiana 50(3)(2021): 691-697


Nutrient Enrichment in Alginate Bead for Enhancement of Cell Growth and Ammonium Removal by Alginate Immobilized Nannochloropsis sp.

(Pengayaan Nutrien dalam Manik Alginat bagi Penambahbaikan Pertumbuhan Sel dan Penyingkiran Ammonia oleh Pegun Alginat Nannochloropsis sp.)




1Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia


2School of Fisheries and Aquaculture Sciences, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu Darul Iman, Malaysia


3Alchemy Laboratory and Services Sdn. Bhd., 326B, 1st Floor, Lot 2520, Jalan Hiliran, Mukim, Losong, 20300 Kuala Terengganu, Terengganu Darul Iman, Malaysia


Diserahkan: 21 Februari 2020/Diterima: 18 Ogos 2020



Microalgae have been immobilized in alginate matrixes for the ease of harvesting of the microalgae. However, not all microalgae thrive when immobilized. Immobilized cells are sensitive to the micro-environment in alginate matrixes. Hence, this study aims to improve the growth of immobilized cells and also ammoniacal-nitrogen (NH4+-N) removal by adding growth medium in alginate beads during the immobilization process. Different strength of the Guillard’s f/2 medium (0%, 30%, 50%, and 100%) was enriched in alginate beads inoculated with Nannochloropsis sp. The immobilized cells were then cultivated in seawater with 1000 µM NH4+-N as the sole nitrogen source. The growth and NH4+-N uptake by immobilized cells enriched with different strength of f/2 medium were compared. There were no significant differences on specific growth rate and specific uptake rate of immobilized cells after nutrient enrichment in alginate beads. However, maximum cells attained and maximum NH4+-N removed increased when strength of f/2 medium enriched in alginate beads was increased. Significantly higher maximum cells attained and maximum NH4+-N removal were found in immobilized cells enriched with half strength of f/2 medium than those without nutrient enrichment. The present study demonstrated that nutrient enriched in alginate beads can be used by immobilized cells, and subsequently improves the performance of immobilized cells in marine water treatment and production of microalgal biomass simultaneously.


Keywords: Alginate bead; ammonia removal; immobilization; Nannochloropsis sp.; nutrient enrichment



Mikroalga dipegunkan pada matriks alginat bagi memudahkan penuaian mikroalga. Walau bagaimanapun, tidak semua mikroalga dapat hidup dengan baik apabila dipegunkan. Sel yang dipegunkan adalah sensitif terhadap mikrosekitaran di dalam matriks alginat. Oleh itu, kajian ini dilakukan bertujuan untuk menambahbaik pertumbuhan sel yang dipegunkan dan juga penyingkiran nitrogen ammonia (NH4+-N) dengan menambahkan medium pertumbuhan di dalam manik alginat semasa proses pemegunan. Medium Guillard f/2 dengan kepekatan yang berbeza (0%, 30%, 50% dan 100%) telah diperkayakan dalam manik alginat yang diinokulasi denganNannochloropsis sp. Sel yang telah dipegunkan kemudiannya dikulturkan ke dalam air laut yang dibekalkan dengan 1000 μM NH4+-N sebagai sumber nitrogen tunggal. Pertumbuhan dan pengambilan NH4+-N oleh sel pegun yang diperkayakan dengan kepekatan medium f/2 yang berbeza telah dibandingkan. Kadar tumbesaran khusus dan kadar pengambilan khusus bagi sel pegun tidak berbeza dengan ketara selepas pengayaan nutrien dalam manik alginat. Namun begitu, jumlah sel maksimum yang diperoleh dan NH4+-N maksimum yang disingkirkan telah meningkat apabila kepekatan medium f/2 yang diperkayakan di dalam manik alginat meningkat. Jumlah sel maksimum yang diperoleh dan NH4+-N maksimum yang disingkirkan adalah nyata lebih tinggi di dalam sel pegun yang diperkayakan dengan kepekatan separuh medium f/2 berbanding dengan sel pegun tanpa pengayaan nutrien. Kajian ini menunjukkan bahawa pengayaan nutrien dalam manik alginat dapat digunakan oleh sel pegun dan seterusnya meningkatkan prestasi sel pegun dalam rawatan air marin dan penghasilan biojisim mikroalga secara serentak.


Kata kunci: Manik alginat; Nannochloropsis sp.; pemegunan; pengayaan nutrien; penyingkiran ammonia



Banerjee, S., Tiwade, P.B., Sambhav, K., Banerjee, C. & Bhaumik, S.K. 2019. Effect of alginate concentration in wastewater nutrient removal using alginate-immobilized microalgae beads: Uptake kinetics and adsorption studies. Biochemical Engineering Journal 149: 107241.

De-Bashan, L.E. & Bashan, Y. 2010. Immobilized microalgae for removing pollutants: Review of practical aspects. Bioresource Technology 101(6): 1611-1627.

Dourou, M., Tsolcha, O.N., Tekerlekopoulou, A.G., Bokas, D. & Aggelis, G. 2018. Fish farm effluents are suitable growth media for Nannochloropsis gaditana, a polyunsaturated fatty acid producing microalga. Engineering in Life Sciences 18(11): 851-860.

Emparan, Q., Harun, R. & Danquah, M.K. 2019. Role of phycoremediation for nutrient removal from wastewaters: A review. Applied Ecology and Environmental Research 17(1): 889-915.

Garboya, I., León, R. & Vı́lchez, C. 2002. Diffusion characteristics of nitrate and glycerol in alginate. Colloids and Surfaces B: Biointerfaces 25(1): 1-9.

Hernandez, J.P., de-Bashan, L.E. & Bashan, Y. 2006. Starvation enhances phosphorus removal from wastewater by the microalga Chlorella spp. co-immobilized with Azospirillum brasilense. Enzyme and Microbial Technology 38(1-2): 190-198.

Hii, Y.S., Soo, C.L., Chuah, T.S., Mohd-Azmi, A. & Abol-Munafi, A.B. 2011. Interactive effect of ammonia and nitrate on the nitrogen uptake by Nannochloropsis sp. Journal of Sustainability Science and Management 6(1): 60-68.

Jiménez-Pérez, M.V., Sánchez-Castillo, P., Romera, O., Fernández-Moreno, D. & Pérez-Martínez, C. 2004. Growth and nutrient removal in free and immobilized planktonic green algae isolated from pig manure. Enzyme and Microbial Technology 34(5): 392-398.

Kaya, V.M., Goulet, J., de la Noüe, J. & Picard, G. 1996. Effect of intermittent CO2 enrichment during nutrient starvation on tertiary treatment of wastewater by alginate-immobilized Scenedesmus bicellularis. Enzyme and Microbial Technology 18(8): 550-554.

Khan, M.I., Shin, J.H. & Kim, J.D. 2018. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories 17(36): 1-21.

Kwon, G., Nam, J.H., Kim, D.M., Song, C. & Jahng, D. 2020. Growth and nutrient removal of Chlorella vulgaris in ammonia-reduced raw and anaerobically-digested piggery wastewaters. Environmental Engineering Research 25(2): 135-146.

Lv, J., Feng, J., Liu, Q. & Xie, S. 2017. Microalgal cultivation in secondary effluent: Recent developments and future work. International Journal of Molecular Sciences 18(1): 79.

Moreno-Garrido, I., Campana, O., Lubián, L.M. & Blasco, J. 2005. Calcium alginate immobilized marine microalgae: Experiments on growth and short-term heavy metal accumulation. Marine Pollution Bulletin 51(8-12): 823-829.

Pane, L., Feletti, M., Bertino, C. & Carli, A. 1998. Viability of the marine microalga Tetraselmis suecica grown free and immobilized in alginate beads. Aquaculture International 6(6): 411-420.

Parsons, T.R., Maita, Y. & Lalli, C.M. 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Oxford: Pergamon Press. pp. 3-8.

Pérez-Martínez, C., Sánchez-Castillo, P. & Jiménez-Pérez, M.V. 2010. Utilization of immobilized benthic algal species for N and P removal. Journal of Applied Phycology 22(3): 277-282.

Ruiz-Marin, A., Mendoza-Espinosa, L.G. & Stephenson, T. 2010. Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresource Technology 101(1): 58-64.

Smith, L.L., Fox, J.M. & Granvil, D.R. 1993. Intensive algae culture techniques. In CRC Handbook of Mariculture. Volume 1. Crustacean Aquaculture. 2nd ed. edited by McVey, J.P. Boca Raton, Florida: CRC Press, Inc. pp. 3-14.

Soo, C.L., Chen, C.A., Bojo, O. & Hii, Y.S. 2017. Feasibility of marine microalgae immobilization in alginate bead for marine water treatment: Bead stability, cell growth, and ammonia removal. International Journal of Polymer Science 2017: 1-7.

Tan, J.S., Lee, S.Y., Chew, K.W., Lam, M.K., Lim, J.W., Ho, S.H. & Show, P.L. 2020. A review on microalgae cultivation and harvesting, and their biomass extraction processing using ionic liquids. Bioengineered 11(1): 116-129.

Velichkova, K.N., Sirakov, I.N., Beev, G.G., Denev, S.A. & Pavlov, D.H. 2016. Treatment of wastewater originating from aquaculture and biomass production in laboratory algae bioreactor using different carbon sources. Sains Malaysiana 45(4): 601-608.

Xin, L., Hong-Ying, H., Ke, G. & Jia, Y. 2010. Growth and nutrient removal properties of a freshwater microalga Scenedesmus sp. LX1 under different kinds of nitrogen sources. Ecological Engineering 36(4): 379-381.

Zhang, E., Wang, B., Ning, S., Sun, H., Yang, B., Jin, M. & Hou, L. 2012. Ammonia-nitrogen and orthophosphate removal by immobilized Chlorella sp. isolated from municipal wastewater for potential use in tertiary treatment. African Journal of Biotechnology 11(24): 6529-6534.

Zhuang, L.L., Yu, D., Zhang, J., Liu, F.F., Wu, Y.H., Zhang, T.Y., Dao, G.H. & Hu, H.Y. 2018. The characteristics and influencing factors of the attached microalgae cultivation: A review. Renewable and Sustainable Energy Reviews 94: 1110-1119.


*Pengarang untuk surat-menyurat; email: