Sains Malaysiana 50(3)(2021): 743-751


A Comparative Study of Microwave-Assisted and Conventional Heating Methods of the Synthesis of 1-(Naphthalene-1-Yl)-3-(O, M, P-Tolyl)Thioureas, DFT Analysis, Antibacterial Evaluation and Drug-Likeness Assessment

(Kajian Perbandingan antara Bantuan Mikrogelombang dan Kaedah Pemanasan Konvensional terhadap Sintesis 1-(Naftalena-1-Yl)-3-(O, M, P-Tolil)Tiourea, Analisis DFT, Penilaian Antibakteria dan Kesamaan Ubatan)




Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia


Diserahkan: 8 Jun 2020/Diterima: 27 Ogos 2020



New isomers of naphthalene-monothioureas, 3a-3c, were synthesized and characterized by using infrared (IR), 1H and 13 C nuclear magnetic resonance (NMR) and mass spectroscopies (MS). The compounds were obtained from the reaction of o-, m-, p- toluidine with naphthyl isothiocyanate using conventional reflux and microwave-assisted irradiation methods.  Microwave-assisted reaction gave higher yields with reduces the reaction time compared to the conventional heating method. Density Functional Theory (DFT) calculations with 6-31G(d, p) basic set at the B3LYP level is carried out to optimize the structure of isomers and calculate the IR,  1H and 13 C NMR spectra. The DFT B3LYP calculation of FTIR, 1H and 13C NMR spectra of 3a-3c isomers were in accordance with the experimental data. The calculation of frontier molecular orbitals was also selected to study a relationship as a molecular descriptor in antibacterial activity.  The isomers were screened for their in vitro antibacterial activity by using Staphylococcus aureus bacteria. Inhibition activity was displayed for compound 3c with the value of inhibition zone 7 ± 0.34 mm at a concentration of 10 µg/mL. All compounds appeared to be in agreement with Lipinski’s rule of five assessments as they adhered to most of the rules that can be preliminarily classified as active drug-like.


Keywords: Antibacterial activity; DFT; Lipinski’s rule; microwave irradiation; Thiourea isomers



Isomer baru monotiourea-naftalena, 3a-3c telah disintesis dan dicirikan dengan menggunakan spektroskopi infra merah (IM), Spektroskopi Resonans Magnetik Nukleus (RMN) 1H dan 13C dan Spektrometri jisim (SJ). Sebatian ini diperoleh daripada tindak balas antara o-, m-, p- toluidin dengan naftil isotiosianat menggunakan kaedah konvensional refluks dan penyinaran gelombang mikro. Kaedah penyinaran gelombang mikro memberikan hasil yang lebih tinggi pengurangan masa tindak balas berbanding dengan kaedah refluks. Pengiraan Teori Ketumpatan Berfungsi (DFT) dengan set asas 6-31G (d, p) pada aras B3LYP telah dijalankan untuk mengoptimumkan struktur isomer 3a-3c dan mengira spektrum IM, 1H dan 13C RMN. Pengiraan B3LYP spektrum IM, 1H dan 13C RMN isomer 3a-3c adalah bertepatan dengan data uji kaji. Pengiraan orbital molekul frontier juga dipilih untuk mengkaji hubung kait struktur sebatian dalam aktiviti antibakteria. Aktiviti antibakteria dijalankan secarain vitro ke atas semua sebatian dengan menggunakan bakteria Staphylococcus aureus. Aktiviti perencatan dapat dilihat pada sebatian 3c dengan nilai zon perencatan 7 ± 0.34 mm pada kepekatan 10 µg/mL. Kesemua sebatian adalah memenuhi penilaian aturan lima Lipinski's yang boleh dikelaskan berpotensi sebagai ubat aktif.


Kata kunci: DFT; isomer tiourea; mikrogelombang; peraturan Lipinski; sintesis



Ardila, N., Daigle, F., Heuzey, M.C. & Ajji, A. 2017. Antibacterial activity of neat chitosan powder and flakes. Molecules 22(1): 100.

Bardts, M., Gonsior, N. & Ritter, H. 2008. Polymer synthesis and modification by use of microwaves. Macromolecular Chemistry and Physics 209(1): 25-31.

Caddick, S. & Fitzmaurice, R. 2009. Microwave enhanced synthesis. Tetrahedron 65(17): 3325-3355.

Cho, H., Török, F. & Török, B. 2014. Energy efficiency of heterogeneous catalytic microwave-assisted organic reactions. Green Chemistry 16(7): 3623-3634.

Fakhar, I., Hussien, N.J, Sapari, S., Bloh, A.H., Yusoff, S.F., Hasbullah, S.A., Yamin, B.M., Mutalib, S.A., Shihab, S.M. & Yousif, E. 2018. Synthesis, X-Ray diffraction, theoretical and anti-bacterial studies of bis-thiourea secondary amine. Journal of Molecular Structure 159: 96-102.

Fakhar, I., Yamin, B.M. & Hasbullah, S.A. 2016. Synthesis and characterization of bis-thiourea having amino acid derivatives. AIP Conference Proceedings. pp. 030012.

Farzanfar, J., Ghasemi, K., Rezvani, A.R., Delarami, H.S., Ebrahimi, A., Hosseinpoor, H., Eskandari, A., Rudbari, H.A. & Bruno, G. 2015. Synthesis, characterization, X-ray crystal structure, DFT calculation and antibacterial activities of new vanadium (IV, V) complexes containing chelidamic acid and novel thiourea derivatives. Journal of Inorganic Biochemistry 147: 54-64.

Gangrade, D., Lad, S. & Mehta, A. 2015. Overview on microwave synthesis-important tool for green chemistry. International Journal of Research in Pharmacy & Science 5(2): 37-42.

Gao, Y. & Du, D.M. 2013. Facile synthesis of chiral 2-amino-4-(indol-3-yl)-4H-chromene derivatives using thiourea as the catalyst. Tetrahedron: Asymmetry 24(20): 1312-1317.

Halimehjani, A.Z., Pourshojaei, Y. & Saidi, M.R. 2009. Highly efficient and catalyst-free synthesis of unsymmetrical thioureas under solvent-free conditions. Tetrahedron Letters 50(1): 32-34.

Khansari, M.E., Wallace, K.D. & Hossain, M.A. 2014. Synthesis and anion recognition studies of a dipodal thiourea-based sensor for anions. Tetrahedron Letters 55(2): 438-440.

Kodomari, M., Suzuki, M., Tanigawa, K. & Aoyama, T. 2005. A convenient and efficient method for the synthesis of mono-and N, N-disubstituted thioureas. Tetrahedron Letters 46(35): 5841-5843.

Larhed, M. & Hallberg, A. 2001. Microwave-assisted high-speed chemistry: A new technique in drug discovery. Drug Discovery Today 6(8): 406-416.

Liu, W., Zhou, J., Zhang, T., Zhu, H., Qian, H., Zhang, H., Huang, W. & Gust, R. 2012. Design and synthesis of thiourea derivatives containing a benzo [5, 6] cyclohepta [1, 2-b] pyridine moiety as potential antitumor and anti-inflammatory agents. Bioorganic & Medicinal Chemistry Letters 22(8): 2701-2704.

Mallakpour, S. & Zadehnazari, A. 2012. Simple and efficient microwave-assisted polycondensation for preparation of chiral poly (amide-imide)s having pendant phenol moiety. Polymer Science Series B 54(5-6): 314-322.

Marcos, P.M., Proença, C.S., Teixeira, F.A., Ascenso, J.R., Bernardino, R.J. & Cragg, P.J. 2013. Synthesis, NMR and DFT conformational studies of homooxacalixarene (cyanopropyl) oxy derivatives, precursors to urea-terminated compounds. Tetrahedron 69(35): 7430-7437.

Misral, H., Sapari, S., Rahman, T., Ibrahim, N., Yamin, B.M. & Hasbullah, S.A. 2018. Evaluation of novel N-(dibenzylcarbamothioyl) benzamide derivatives as antibacterial agents by using DFT and drug-likeness assessment. Journal of Chemistry 2018: Article ID. 9176280.

Ngah, F.A.A., Zakariah, E.I., Fakhar, I., Hassan, N.I., Heng, L.Y., Yamin, B. & Hasbullah, S.A. 2018. A new thiourea compound as potential ionophore for metal ion sensor. Indonesian Journal of Chemistry 18(1): 116-120.

Ravichandran, S. & Karthikeyan, E. 2011. Microwave synthesis-a potential tool for green chemistry. International Journal Chemistry Technology Resources 3(1): 466-470.

Sapari, S., Wong, S., Ngatiman, M.F., Misral, H. & Hasbullah, S.A. 2018. Crystal structure and Hirshfeld analysis of 2-[bis (1-methyl-1H-indol-3-yl) methyl] benzoic acid. Acta Crystallographica Section E: Crystallographic Communications 74(11): 1580-1583.

Sheryn, W., Ngah, F.A.A., Latip, J., Hassan, N.I. & Hasbullah, S.A. 2018. Solvent-free microwave accelerated synthesis and structural characterization of phthalide-fused indolines. Heterocycles 96(5): 839-849.

Yanai, K., Sumida, N., Okakura, K., Moriya, T., Watanabe, M. & Murakami, T. 2004. Para-position derivatives of fungal anthelmintic cyclodepsipeptides engineered with Streptomyces Venezuelae antibiotic biosynthetic genes. Nature Biotechnology 22(7): 848-855.

Yang, W., Liu, H., Li, M., Wang, F., Zhou, W. & Fan, J. 2012. Synthesis, structures and antibacterial activities of benzoylthiourea derivatives and their complexes with cobalt. Journal of Inorganic Biochemistry 116: 97-105.

Yao, J., Chen, J., He, Z., Sun, W. & Xu, W. 2012. Design, synthesis and biological activities of thiourea containing sorafenib analogs as antitumor agents. Bioorganic & Medicinal Chemistry 20(9): 2923-2929.

Yin, B., Liu, Z., Yi, M. & Zhang, J. 2008. An efficient method for the synthesis of disubstituted thioureas via the reaction of N, N′-di-Boc-substituted thiourea with alkyl and aryl amines under mild conditions. Tetrahedron Letters 49(22): 3687-3690.

Yin, X., Chen, J., Yuan, W., Lin, Q., Ji, L. & Liu, F. 2012. Preparation and antibacterial activity of Schiff bases from O-carboxymethyl chitosan and para-substituted benzaldehydes. Polymer Bulletin 68(5): 1215-1226.

Ying, K.S., Ngah, F.A.A., Sapari, S., Heng, L.Y. & Hasbullah, S.A. 2019. Complexation study of bis-thiourea compound with aluminium ion as ionophore for development of potentiometric ion sensor. Sains Malaysiana 48(12): 2649-2661.

Zawawi, N.K.N.A., Taha, M., Ahmat, N., Ismail, N.H., Wadood, A., Rahim, F. & Rehman, A. U. 2015. Synthesis, in vitro evaluation and molecular docking studies of biscoumarin thiourea as a new inhibitor of α-glucosidases. Bioorganic Chemistry 63: 36-44.

Zhu, T., He, X. & Zhang, J.Z. 2012. Fragment density functional theory calculation of NMR chemical shifts for proteins with implicit solvation. Physical Chemistry Chemical Physics 14(21): 7837-7845.


*Pengarang untuk surat-menyurat; email: