Sains Malaysiana 50(4)(2021): 997-1006

http://doi.org/10.17576/jsm-2021-5004-10

 

Feasibility of UV-Vis Spectral Fingerprinting Combined with Chemometrics for Rapid Detection of Phyllanthus niruri Adulteration with Leucaena leucocephala

(Kebolehlaksanaan Gabungan Spektrum Cap Jari UV-Vis dengan Kemometri untuk Pengesanan Pantas Phyllanthus niruri Dicemarkan dengan Leucaena leucocephala)

 

MOHAMAD RAFI1,2*, BAYU NURCAHYO1, WULAN TRI WAHYUNI1,2, ZULHAN ARIF1, DEWI ANGGRAINI SEPTANINGSIH3, SASTIA PRAMA PUTRI4 & EIICHIRO FUKUSAKI4

 

1Department Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Jalan Tanjung, Kampus IPB Dramaga, Bogor 16680, Indonesia

 

2Tropical Biopharmaca Research Center, Institut of Research and Community Empowerment, IPB University, Jalan Taman Kencana No. 3, Kampus IPB Taman Kencana, Bogor 16128, Indonesia

 

3Advanced Research Laboratory, Institut of Research and Community Empowerment, IPB University, Jalan Palem Raya, Kampus IPB Dramaga, Bogor 16680, Indonesia

 

4Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

 

Diserahkan: 26 Mei 2020/Diterima: 10 September 2020

 

ABSTRACT

Phyllanthus niruri is widely used in Indonesia as immunostimulant. The morphology of Leucaena leucocephala leaves is similar to that of P. niruri leaves. L. leucocephala is easy to find and collect because it is widely distributed in the world. Therefore, it is likely P. niruri could be adulterated with L. leucocephala. Therefore, identification and authentication of P. niruri is important to ensure the raw materials used are original without any substitution or mixture with other similar plants causing inconsistencies in their efficacy. In this paper, we described feasibility used of UV-Vis spectral fingerprinting and chemometrics for rapid method for the identification and detection of P. niruri leaves adulterated with L. leucocephala leaves. UV-Vis spectra of samples measured in the interval of 200-800 nm and signal smoothing followed by standard normal variate were used for pre-processing the spectral data. Principal component analysis (PCA) with the absorbance data from the pre-processed UV-Vis spectra in the range of 250-700 nm as variables could distinguish P. niruri from L. leucocephala. PCA followed by discriminant analysis (DA) could successfully classified P. niruri mixed with 5, 25, and 50% L. luecocephala into their respective groups (96.81%). We also employed soft independent modelling of class analogy (SIMCA) for authentication of P. niruri and found that 88.3% of the samples were also correctly classified into their respective groups. A combination of UV-Vis spectroscopy with chemometrics, such as PCA-DA and SIMCA, were used for the first time for the identification and detection of P. niruri adulterated with L. leucocephala.

 

Keywords: Authentication; chemometrics; Leucaena leucocephala; Phyllanthus niruri; UV-Vis spectroscopy

 

ABSTRAK

Phyllanthus niruri banyak digunakan di Indonesia sebagai imunostimulan. Morfologi daun Leucaena leucocephala menyerupai daun P. niruri. L. leucocephala mudah dijumpai dan dikumpulkan kerana boleh diperoleh secara meluas di seluruh dunia. Oleh itu, berkemungkinan P. niruri boleh disatukan dengan L. leucocephala. Oleh itu, pengenalan dan pengesahan P. niruri adalah penting untuk memastikan bahan mentah yang digunakan adalah asli tanpa penggantian atau campuran dengan tanaman lain yang dapat menyebabkan ketidaktekalan dalam keberkesanannya. Dalam kajian ini, kami menerangkan kemungkinan penggunaan cap jari spektrum UV dan Vis dan kemometri untuk kaedah yang cepat untuk mengenal pasti dan mengesan daun P. niruri yang disatukan dengan daun L. leucocephala. Sampel spektrum UV-Vis yang diukur dalam selang 200-800 nm dan kelancaran isyarat diikuti dengan variasi piawai digunakan untuk memproses data spektrum. Analisis komponen utama (PCA) dengan data serapan daripada spektrum UV-Vis yang telah diproses pada julat pada 250-700 nm kerana pemboleh ubah dapat membezakan P. niruri daripada L. leucocephala. PCA diikuti dengan analisis diskriminan (DA) berjaya mengkelaskan P. niruri bercampur dengan 5, 25 dan 50% L. luecocephala ke dalam kumpulan masing-masing (96.81%). Kami juga menggunakan model bebas analogi kelas (SIMCA) untuk pengesahan P. niruri dan mendapati bahawa 88.3% sampel juga dikelaskan dengan betul ke dalam kumpulan masing-masing. Gabungan spektroskopi UV-Vis dengan kemometri, seperti PCA-DA dan SIMCA digunakan untuk pertama kalinya dalam pengenalan dan pengesanan P. niruri yang disatukan dengan L. leucocephala.

 

Kata kunci: Kemometri; Leucaena leucocephala; pengesahan; Phyllanthus niruri; spektroskopi UV-Vis

 

RUJUKAN

Abdulla, M.A., Ahmed, K.A.A., Al-Bayaty, F.H. & Masood, Y. 2010. Gastroprotective effect of Phyllanthus niruri leaf extract against ethanol-induced gastric mucosal injury in rats. African Journal of Pharmacy and Pharmacology 4: 226-230.

Awe, F.A., Giwa-Ajeniya, A.O., Akinyemi, A.A. & Ezeri, G.N.O. 2013. Phytochemical analysis of Acalypha wilkesiana, Leucaena leucocephala, Pepperomia pellucida and Sena alata leaves. The International Journal of Engineering and Science 2(9): 41-44.

Bagalkotkar, G., Sagineedu, S.R., Saad, M.S. & Stanslas, J. 2006. Phytochemicals from Phyllanthus niruriLinn. and their pharmacological properties: A review. Journal of Pharmacy and Pharmacology 58: 1559-1570.

Bansal, A., Chhabra, V., Rawal, R.K. & Sharma, S. 2014. Chemometrics: A new scenario in herbal drug standardization. Journal of Pharmaceutical Analysis 4: 223-233.

Berrueta, L.A., Alonso, R.M. & Heberger, K. 2007. Supervised pattern recognition in food analysis. Journal of Chromatography A 1158: 196-214.

Bian, X., Lu, Z. & Kollenburg, G.V. 2020. Ultraviolet-visible diffuse reflectance spectroscopy combined with chemometrics for rapid discrimination of Angelicae Sinensis Radix from its four similar herbs. Analytical Methods 12: 3499-3507.

Chowtivannakul, P., Srichaikul, B. & Talubmook, C. 2016. Antidiabetic and antioxidant activities of seed extract from Leucaena leucocephala (Lam.) de wit. Agriculture and Natural Resources 50: 357e361.

Couto, G.A., Kassuya, C.A.L., Calixto, J.B. & Petrovick, P.R. 2013. Anti-inflammatory, antiallodynic effects and quantitative analysis of gallic acid in spray dried powders from Phyllanthus niruri leaves, stems, roots and whole plant. Brazilian Journal of Pharmacognosy 23: 124-131.

Custers, D., Courselle, P., Apers, S. & Deconinck, E. 2016. Chemometrical analysis of fingerprints for the detection of counterfeit and falsified medicines. Reviews in Analytical Chemistry 35(4): 145-168.

Dankowska, A. & Kowalewski, W. 2019. Tea types classification with data fusion of UV-Vis, synchronous fluorescence and NIR spectroscopies and chemometric analysis, Spectrochimica Acta. Part A Molecular and Biomolecular Spectroscopy 211: 195-202.

Ezzat, M.I., Okba, M.M., Ahmed, S.H., El-Banna, H.A., Prince, A., Mohamed, S.O. & Ezzat, S.M. 2018. In-depth hepatoprotective mechanistic study of Phyllanthus niruri: in vitro and in vivo studies and its chemical characterization. PLoS ONE 15(1): e0226185.

Gad, H.A., El-Ahmady, S.H., Abu-Shoer, M.I. & Al-Azizi, M.M. 2013a. A modern approach to the authentication and quality assessment of thyme using uv spectroscopy and chemometric analysis. Phytochemical Analysis 24: 520-526.

Gad, H.A., El-Ahmady, S.H., Abou-Shoer, M.I. & Al-Azizi, M.M. 2013b. Application of chemometrics in authentication of herbal medicines: A review. Phytochemical Analysis 24: 1-24.

Guo, J., Chen, Q.Q., Wang, C., Qiu, C., Liu, B., Jiang, Z.H. & Zhang, W. 2015.  Comparison of two exploratory data analysis methods for classification of Phyllanthus chemical fingerprint: Unsupervised vs. supervised pattern recognition technologies. Analytical and Bioanalytical Chemistry 407: 1389-1401.

Ibrahim, M.T. 2017. Cytotoxic activities of flavonoid glycosides isolated from Leucaena leucocephala pods cultivated in Egypt. Journal of Pharmacy Research 11(2): 108-115.

Ibrahim, D., Hong, L.S. & Kuppan, N. 2013. Antimicrobial activity of crude methanolic extract from Phyllanthus niruri. Natural Product Communication 8: 493-496.

Ifeoma, O., Samuel, O., Itohan, A.M. & Adeola, S.O. 2012. Isolation, fractionation and evaluation of the antiplasmodial properties of Phyllanthus niruri resident in its chloroform fraction. Asian Pacific Journal of Tropical Medicine 6: 169-175.

Inglis, P.W., Mata, L.R., da Silva, M.J., Vieira, R.F., Alves, R.B.N., Silva, D.B. & Azevedo, V.C.R. 2018. DNA barcoding for the identification of Phyllanthus taxa used medicinally in Brazil. Planta Medica 84: 1300-1310.

Jose, J., Sudhakaran, S., Kumar, S., Jayaraman, S. & Jayadevi, V. 2014. Study of in vitro immunomodulatory effect of flavonoid isolated from Phyllanthus niruri on human blood lymphocytes and evaluation of its antioxidant potential. International Journal of Pharmacognosy and Pythochemical Research 6: 284-289.

Kaiser, H.F. 1960.  The application of electronic computers to factor analysis. Educational and Psychological Measurement 20: 141-151.