Sains Malaysiana 50(8)(2021): 2251-2269

http://doi.org/10.17576/jsm-2021-5008-10

 

Preparation of Alpinia galanga Stem Based Activated Carbon via Single-step Microwave Irradiation for Cationic Dye Removal

(Penyediaan Karbon Teraktif Berasaskan BatangAlpinia galangadengan Penyinaran Gelombang Mikro Satu Langkah untuk Penyingkiran Pewarna Kation)

 

N.A. AHAMMAD, M.F.M. YUSOP, A.T. MOHD DIN & M.A. AHMAD*

 

School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia

 

Diserahkan: 29 September 2020/Diterima: 15 Disember 2020

 

ABSTRACT

The focal point of this study is to synthesis Alpinia galanga Stem-based activated carbon (AGSAC) by using single-step microwave irradiation and testing it for the removal of cationic dye, methylene blue (MB) from aqueous solution. AGSAC was prepared under the flow of carbon dioxide (CO2) for the gasification effect. The factors of contact time (from 0 to 24 h) and initial concentration (25-300 mg/L) on the adsorption performance of AGSAC were studied. With the aid of response surface methodology (RSM) via face-centered composite design (FCD), optimum preparation conditions for AGSAC were found to be 400 W for radiation power and 4 min for activation time, respectively, which resulted in 95.67% of MB dye removal. The optimized AGSAC has a Bruneaur-Emmet-Teller (BET) surface area of 172.19 m2/g, mesopore surface area of 103.32 m2/g, a total pore volume of 0.1077 cm3/g, and fixed carbon content of 47.63%. The pore diameter of AGSAC was found to be a mesoporous type with a pore diameter of 2.50 nm. Freundlich isotherm and pseudo-second-order were found as the best-fitted model for MB adsorption equilibrium and kinetic respectively onto prepared AGSAC. Intraparticle diffusion was found to be the rate-limiting step.

Keywords: Activated carbon; adsorption; methylene blue; microwave irradiation; response surface methodology

 

ABSTRAK

Fokus kajian ini adalah untuk sintesis karbon teraktif berasaskan Batang Alpinia galanga (AGSAC) dengan menggunakan penyinaran gelombang mikro satu langkah dan untuk menguji penyingkiran pewarna kation, metilena biru (MB) daripada larutan berair. AGSAC disediakan di bawah aliran karbon dioksida (CO2) untuk kesan gasifikasi. Faktor masa sentuh (dari 0 hingga 24 jam) dan kepekatan awal (25-300 mg/L) pada prestasi penjerapan AGSAC telah dikaji. Dengan bantuan kaedah gerak balas permukaan (RSM) melalui reka bentuk komposit berpusatkan wajah (FCD), keadaan persiapan optimum untuk AGSAC didapati 400 W bagi kuasa sinaran dan 4 min bagi masa pengaktifan, masing-masing, yang menghasilkan 95.67% penyingkiran pewarna MB. AGSAC yang dioptimumkan mempunyai luas permukaan Bruneaur-Emmet-Teller (BET) 172.19 m2/g, luas permukaan mesoliang 103.32 m2/g, jumlah liang total 0.1077 cm3/g dan kandungan karbon tetap 47.63%. Diameter liang AGSAC didapati jenis mesoliang dengan diameter liang 2.50 nm. Freundlich isoterm dan pseudo-peringkat-kedua didapati sebagai model yang paling sesuai untuk keseimbangan penjerapan dan kinetik MB masing-masing pada AGSAC yang telah disediakan. Penyebaran intrazarah didapati sebagai langkah pengehadan kadar.

Kata kunci: Kaedah gerak balas permukaan; karbon teraktif; metilena biru; penjerapan; penyinaran gelombang mikro

 

RUJUKAN

Ahmad, A., Rafatullah, M., Sulaiman, O., Ibrahim, M. & Hashim, R. 2009. Scavenging behaviour of meranti sawdust in the removal of methylene blue from aqueous solution. Journal of Hazardous Materials 170(1): 357-365.

Ahmad, M.A. & Alrozi, R. 2011. Optimization of rambutan peel based activated carbon preparation conditions for Remazol Brilliant Blue R removal. Chemical Engineering Journal 168(1): 280-285.

Ahmad, M.A., Yusop, M.F.M. & Tan, S.H. 2020. Activated carbon from meranti wood sawdust waste prepared by microwave heating for dye removal. In Advances in Waste Processing Technology, edited by Yaser, A.Z. Singapore: Springer. pp. 61-87.

Ajduković, M., Stojadinović, S., Marinović, S., Milutinović-Nikolić, A., Dojčinović, B. & Banković, P. 2020. Activation of Oxone® with plasma deposited mixed cobalt and alumina oxide for the dye degradation. Applied Surface Science 503: 144144.

Alhooshani, K.R. 2019. Adsorption of chlorinated organic compounds from water with cerium oxide-activated carbon composite. Arabian Journal of Chemistry 12(8): 2585-2596.

Aljeboree, A.M., Alshirifi, A.N. & Alkaim, A.F. 2017. Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arabian Journal of Chemistry 10: S3381-S3393.

Amézquita-Marroquín, C.P., Torres-Lozada, P., Giraldo, L., Húmpola, P.D., Rivero, E., Poon, P.S., Matos, J. & Moreno-Piraján, J.C. 2020. Sustainable production of nanoporous carbons: Kinetics and equilibrium studies in the removal of atrazine. Journal of Colloid and Interface Science 562: 252-267.

Arami-Niya, A., Daud, W.M.A.W. & Mjalli, F.S. 2010. Using granular activated carbon prepared from oil palm shell by ZnCl2 and physical activation for methane adsorption. Journal of Analytical and Applied Pyrolysis 89(2): 197-203.

Ayawei, N., Angaye, S.S., Wankasi, D. & Dikio, E.D. 2015. Synthesis, characterization and application of Mg/Al layered double hydroxide for the degradation of congo red in aqueous solution. Open Journal of Physical Chemistry 5(3): 56.

Azaman, S.H., Afandi, A., Hameed, B.H. & Din, A.M. 2018. Removal of malachite green from aqueous phase using coconut shell activated carbon: Adsorption, desorption, and reusability studies. Journal of Applied Science and Engineering 21(3): 317-330.

Barghi, S.H., Tsotsis, T.T. & Sahimi, M. 2014. Chemisorption, physisorption and hysteresis during hydrogen storage in carbon nanotubes. International Journal of Hydrogen Energy 39(3): 1390-1397.

Basu, S., Ghosh, G. & Saha, S. 2018. Adsorption characteristics of phosphoric acid induced activation of bio-carbon: Equilibrium, kinetics, thermodynamics and batch adsorber design. Process Safety and Environmental Protection 117: 125-142.

Belayachi, H., Bestani, B., Benderdouche, N. & Belhakem, M. 2019. The use of TiO2 immobilized into grape marc-based activated carbon for RB-5 Azo dye photocatalytic degradation. Arabian Journal of Chemistry 12(8): 3018-3027.

Bhat, S.A., Zafar, F., Mirza, A.U., Mondal, A.H., Kareem, A., Haq, Q.M.R. & Nishat, N. 2020. NiO nanoparticle doped-PVA-MF polymer nanocomposites: Preparation, congo red dye adsorption and antibacterial activity. Arabian Journal of Chemistry 13(6): 5724-5739.

Bojić, D., Momčilović, M., Milenković, D., Mitrović, J., Banković, P., Velinov, N. & Nikolić, G. 2017. Characterization of a low cost Lagenaria vulgaris based carbon for ranitidine removal from aqueous solutions. Arabian Journal of Chemistry 10(7): 956-964.

Cheng, S., Zhang, L., Xia, H., Peng, J., Shu, J., Li, C., Jiang, X. & Zhang, Q. 2017. Adsorption behavior of methylene blue onto waste-derived adsorbent and exhaust gases recycling. RSC Advances 7(44): 27331-27341.

Chingombe, P., Saha, B. & Wakeman, R.J. 2006. Sorption of atrazine on conventional and surface modified activated carbons. Journal of Colloid and Interface Science 302(2): 408-416.

Chowdhury, Z., Mohd, S., Zain, S., Rashid, A., Arami Niya, A. & Khalisanni, K. 2012. Process variables optimization for preparation and characterization of novel adsorbent from lignocellulosic waste. Bioresources 7(3): 3732-3754.

Damasceno, B.S., da Silva, A.F.V. & de Araújo, A.C.V. 2020. Dye adsorption onto magnetic and superparamagnetic Fe3O4 nanoparticles: A detailed comparative study. Journal of Environmental Chemical Engineering 8(5): 103994.

Davarnejad, R., Afshar, S. & Etehadfar, P. 2020. Activated carbon blended with grape stalks powder: Properties modification and its application in a dye adsorption. Arabian Journal of Chemistry 13(5): 5463-5473.

Dixit, S. & Yadav, V.L. 2019. Optimization of polyethylene/polypropylene/alkali modified wheat straw composites for packaging application using RSM. Journal of Cleaner Production 240: 118228.

Ebrahiem, E.E., Al-Maghrabi, M.N. & Mobarki, A.R. 2017. Removal of organic pollutants from industrial wastewater by applying photo-Fenton oxidation technology. Arabian Journal of Chemistry 10: S1674-S1679.

Elmorsi, T. 2011. Equilibrium isotherms and kinetic studies of removal of methylene nlue dye by adsorption onto miswak leaves as a natural adsorbent. Journal of Environmental Protection 2(6): 817.

Feng, C., Ren, P., Huo, M., Dai, Z., Liang, D., Jin, Y. & Ren, F. 2020. Facile synthesis of trimethylammonium grafted cellulose foams with high capacity for selective adsorption of anionic dyes from water. Carbohydrate Polymers 241: 116369.

Freundlich, H. 1907. Über die adsorption in lösungen. Zeitschrift für Physikalische Chemie 57U(1): 385-470.

Gonzalez, J.M., Murphy, L.R., Penn, C.J., Boddu, V.M. & Sanders, L.L. 2020. Atrazine removal from water by activated charcoal cloths. International Soil and Water Conservation Research 8(2): 205-212.

Guedidi, H., Lakehal, I., Reinert, L., Lévêque, J.M., Bellakhal, N. & Duclaux, L. 2020. Removal of ionic liquids and ibuprofen by adsorption on a microporous activated carbon: Kinetics, isotherms, and pore sites. Arabian Journal of Chemistry 13(1): 258-270.

Guillossou, R., Le Roux, J., Mailler, R., Morlay, C., Vulliet, E., Nauleau, F., Rocher, V. & Gasperi, J. 2020. Influence of the properties of 7 micro-grain activated carbons on organic micropollutants removal from wastewater effluent. Chemosphere 243: 125306.

Günay, A., Arslankaya, E. & Tosun, İ. 2007. Lead removal from aqueous solution by natural and pretreated clinoptilolite: Adsorption equilibrium and kinetics. Journal of Hazardous Materials 146(1): 362-371.

Guo, Z., Kang, Y., Hu, Z., Liang, S., Xie, H., Ngo, H.H. & Zhang, J. 2020. Removal pathways of benzofluoranthene in a constructed wetland amended with metallic ions embedded carbon. Bioresource Technology 311: 123481.

Habeeb, O.A., Kanthasamy, R., Saber, S.E.M. & Olalere, O.A. 2020. Characterization of agriculture wastes based activated carbon for removal of hydrogen sulfide from petroleum refinery waste water. Materials Today: Proceedings 20: 588-594.

Hameed, B.H. & El-Khaiary, M.I. 2008. Equilibrium, kinetics and mechanism of malachite green adsorption on activated carbon prepared from bamboo by K2CO3 activation and subsequent gasification with CO2. Journal of Hazardous Materials 157(2): 344-351.

Hameed, K.S., Muthirulan, P. & Sundaram, M.M. 2017. Adsorption of chromotrope dye onto activated carbons obtained from the seeds of various plants: Equilibrium and kinetics studies. Arabian Journal of Chemistry 10: S2225-S2233.

Ho, Y.S. & McKay, G. 1999. Pseudo-second order model for sorption processes. Process Biochemistry 34(5): 451-465.

Ilnicka, A., Kamedulski, P., Aly, H.M. & Lukaszewicz, J.P. 2020. Manufacture of activated carbons using Egyptian wood resources and its application in oligothiophene dye adsorption. Arabian Journal of Chemistry 13(5): 5284-5291.

Isawi, H. 2020. Using zeolite/polyvinyl alcohol/sodium alginate nanocomposite beads for removal of some heavy metals from wastewater. Arabian Journal of Chemistry 13(6): 5691-5716.

Jabar, J.M. & Odusote, Y.A. 2020. Removal of cibacron blue 3G-A (CB) dye from aqueous solution using chemo-physically activated biochar from oil palm empty fruit bunch fiber. Arabian Journal of Chemistry 13(5): 5417-5429.