Sains Malaysiana 51(10)(2022): 3333-3345


Risk Assessment of Subcritical Water Hydrolysis (SWH) System for Sugar Recovery using Failure Modes and Effects Analysis (FMEA) Methods

(Penilaian Risiko Sistem Hidrolisis Air Subkritikal (SWH) untuk Pemulihan Gula menggunakan Kaedah Mod Kegagalan dan Analisis Kesan (FMEA))




1Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

2Pusat Inovasi dan Teknologi Manisan (MANIS), Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

3Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

4Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

5Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA Sarawak, 96400 Mukah, Sarawak, Malaysia


Diserahkan: 14 Mac 2022/Diterima: 9 Jun 2022



The subcritical water hydrolysis (SWH) process has proven to be an effective method for sugar recovery from bakery waste. However, the natural principle of the process involving high pressure and temperature has made it a hazardous operation. Hence, failure mode and effect analysis (FMEA) has been applied to identify the potential failure modes in subcritical water hydrolysis (SWH) systems. The Risk Priority Number (RPN) approach was used to rate each potential problem during the SWH process. The reactor unit was found to have the highest potential for failure by RPN value of 800 with the 'failure effect analysis' on the potential reactor cap to explode due to the very high pressure inside the reactor that developed during SWH. The failure consequences may lead to injury or even death. As a result of the FMEA assessment approach and several corrective action plans, the failure risks of SWH can be reduced and managed effectively.


Keywords: Failure mode and effects analysis (FMEA); food; Risk Priority Number (RPN) Continuous Improvement (CI); safety; subcritical water hydrolysis (SWH)



Proses hidrolisis air subkritikal (SWH) telah terbukti sebagai kaedah yang berkesan untuk pemulihan gula daripada sisa bakeri. Walau bagaimanapun, prinsip semula jadi proses yang melibatkan tekanan dan suhu tinggi telah menjadikannya operasi yang berbahaya. Oleh itu, analisis mod dan kesan kegagalan (FMEA) telah digunakan untuk mengenal pasti mod kegagalan yang berpotensi dalam sistem hidrolisis air subkritikal (SWH). Pendekatan Nombor Keutamaan Risiko (RPN) digunakan untuk menilai setiap masalah yang berpotensi semasa proses SWH. Unit reaktor didapati mempunyai potensi kegagalan yang paling tinggi dengan nilai RPN 800 dengan 'analisis kesan kegagalan' pada penutup reaktor berpotensi meletup kerana tekanan yang sangat tinggi di dalam reaktor yang berkembang semasa SWH. Akibat daripada kegagalan boleh membawa kepada kecederaan atau kematian. Hasil daripada pendekatan penilaian FMEA dan beberapa pelan tindakan pembetulan, risiko kegagalan SWH dapat dikurangkan dan diuruskan dengan berkesan.


Kata kunci: Hidrolisis air subkritikal (SWH); keselamatan; makanan; mod kegagalan dan analisis kesan (FMEA); Nombor Keutamaan Risiko (RPN) Penambahbaikan Berterusan (CI)



Amin, N., Sabli, N., Izhar, S. & Yoshida, H. 2020. Production of valuable materials from sago bark using subcritical water treatment. International Journal of Engineering Research and Technology 13(1): 1-11.

Balaraju, J., Govinda Raj, M. & Murthy, C.S.N. 2020. Prediction and assessment of LHD machine breakdowns using failure mode effect analysis (FMEA). In Reliability, Safety and Hazard Assessment for Risk-Based Technologies. Lecture Notes in Mechanical Engineering, edited by Varde, P., Prakash, R. & Vinod, G. Singapore: Springer.

Balmforth, H., Keeley, D. & Gadd, S. 2003. Good Practice and Pitfalls in Risk Assessment. Sheffield, United Kingdom: Health and Safety Laboratory.

Bhuiyan, N. & Baghel, A. 2005. An overview of continuous improvement: From the past to the present. Management Decision 43(5): 761-771. doi:10.1108/00251740510597761

Carlson, C. 2014. Understanding and applying the fundamentals of FMEAs. Annual Reliability and Maintainability Symposium.

Caroly, S., Coutarel, F., Landry, A. & Marry-Cheray, I. 2010. Sustainable MSD prevention: Management for continuous improvement between prevention and production. Ergonomic in two assembly line companies. Applied Ergonomics 41: 591-599.

Catelani, M., Ciani, L. & Venzi, M. 2018. Failure modes, mechanisms, and effect analysis on temperature redundant sensor stage. Reliability Engineering & System Safety 180: 425-433.

Chi, C.F., Sigmund, D. & Octavianus, M. 2020. Classification scheme for root cause and failure modes and effects analysis (FMEA) of passanger vehicle recalls. Reliability Engineering & System Safety 2020: 106929.

Du, H., Zeng, L., Liu, S., Li, X., Yuan, Z., Xie, C., Liu, W., Yang, X., Chen, Z. & Li, Z. 2019. Numerical investigation on the influence of nozzle–organization–mode of split burner on flow field distribution and combustion characteristics of a 300-MWe subcritical down-fired boiler. Asia-Pacific Journal of Chemical Engineering 14(6): e2365.

Ebeling, C. 2004. An Introduction to Reliability and Maintainability Engineering. Tata McGraw-Hill Education.

Essien, S., Young, B. & Baroutian, S. 2020. Recent advances in subcritical water and supercritical carbon dioxide extraction of bioactive compounds from plant materials. Trends in Food Science & Technology 97: 156-169.

Gheibi, M., Karrabi, M. & Eftekhari, M. 2019. Designing a smart risk analysis method for gas chlorination units of water treatment plants with combination of failure mode analysis, shannon entropy, and petri net modeling. Ecotoxicology and Environmental Safety 171: 600-608.

Greiserman, S., Epstein, M., Chemodanov, A., Steinbruch, E., Prabhu, M., Guttman, L., Jinjikhashvily, G., Shamis, O., Gozin, M., Kribus, A. & Golberg, A. 2019. Co-production of monosaccharides and hydrochar from green macroalgae Ulva (Chlorophyta) sp. with subcritical hydrolysis and carbonization. Bioenergy Research 12: 1090-1103.

Hassan, S., Wang, J., Kontovas, C. & Bashir, M. 2022. Modified FMEA hazard identification for cross-country petroluem pipepline using Fuzzy Rule Base and approximate reasoning. Journal of Loss Prevention in the Process Industries 74: 104616.

Hau, E. 2010. Explosion Involving a Vessel used in a Hydrothermal Process. Hong Kong.

Imteaz, M.A. & Shanableh, A. 2004. Kinetic model for the water oxidation method for treating wastewater sludges. Developments in Chemical Engineering and Mineral Processing 12(5-6): 515-530.

Huang, J., You, J., Liu, H. & Song, M. 2020. Failure mode and effect analysis improvement: A systematic literature review and future research agenda. Reliability Engineering and System Safety 199: 106885.

Lachos-Perez, D., Baseggio, A., Torres-Mayanga, P.C., Ávila, P.F., Tompsett, G.A., Marostica, M., Goldbeck, R., Timko, M.T., Rostagno, M., Martinez, J. & Forster-Carneiro, T. 2020. Sequential subcritical water process applied to orange peel for the recovery flavanones and sugars. The Journal of Supercritical Fluids 160: 104789.

Lachos-Perez, D., Tompsett, G., Guerra, P., Timko, M., Rostagno, M., Martinez, J. & Forster-Carneiro, T. 2017. Sugars and char formation on subcritical water hydrolysis of sugarcane straw. Bioresource Technology 243: 1069-1077.

Mhetre, R. & Dhake, R. 2012. Using failure mode effect analysis in a precision sheet metal parts manufacturing company. International Journal of Applied Science and Engineering Research 1: 302-312. doi:10.6088/ijaser.0020101031

Mohd Thani, N., Mustapa Kamal, S., Taip, F., Sulaiman, A., Omar, R. & Siajam, S. 2020a. Hydrolysis and characterization of sugar recovery from bakery waste under optimized subcritical water conditions. Journal of Food Science and Technology 57(8): 3108-3118.

Mohd Thani, N., Mustapa Kamal, S., Taip, F., Sulaiman, A., Omar, R. & Izhar, S. 2020b. Sugar recovery from food waste via sub-critical water treatment. Food Reviews International 36(3): 241-257.

Muharja, M., Fadhilah, N., Nurtono, T. & Widjaja, A. 2020. Enhancing enzymatic digestibility of coconut husk using nitrogen-assisted subcritical water for sugar production. Bulletin of Chemical Reaction Engineering & Catalysis 15(1): 84-95.

Pangestuti, R., Siahaan, E., Untari, F. & Chun, B. 2020. Biological activities of Indonesian mangroves obtained by subcritical water extraction. IOP Conference Series: Earth and Environmental Science 441(1): 012101.

Parsana, T. & Patel, M. 2014. A case study: A process FMEA tool to enhance quality and efficieny of manufacturing industry. Bonfring International Journal of Industrial Engineering and Management Science 4(3): 145-152.

Patel, M.S., Patel, A.D. & Damor, S. 2022. Design and development of dual release reconstitutable oral suspension of cefpodoxime proxetil for pediatric patient using risk-based quality by design approach. J. Pharm. Innov. 17: 955-978.

Peeters, J., Basten, R. & Tinga, T. 2018. Improving failure analysis efficiency by combining FTA and FMEA in a recursive manner. Reliability Engineering & System Safety 172: 36-44.

Poms, J., Sacher, S., Nixdorf, M., Dekner, M., Wallner-Mang, S., Jansses, I. & Khinast, J. 2019. The need for new control strategies for particulate matter in parenterals. Pharnaceutical Development and Technology 24(6): 739-750.

Santos, M., Zabot, G., Mazutti, M., Ugalde, G., Rezzadori, K. & Tres, M. 2020. Optimization of subcritical water hydrolysis of pecan wastes biomasses in a semi-continuous mode. Bioresource Technology 306: 123129.

Shinde, R.R., Shrivastava, R. & Morey, R.B. 2015. Failure mode effect analysis - case study for Bush Manufacturing process. International Journal of Scientific Engineering and Applied Science (IJSEAS) 1(4): 283-294.

Sousa, S. 2007. The continuous improvement process in practice. ICQR 2007- 5th International Conference on Quality and Reliability, Chiang Mai, Thailand. pp. 118-122.

Vinodh, S. & Chintha, S.K. 2011. Leanness assessment using multi-grade fuzzy approach. International Journal of Production Research 49(2): 431-445. doi:10.1080/00207540903417494

Wiboonsirikul, J., Nakata, K., Kobayashi, T., Khuwijitjaru, P. & Adachi, S. 2015. Degradation of disaccharides containing two glucose units in subcritical water. Asia-Pacific Journal of Chemical Engineering 10(5): 681-686.


*Pengarang untuk surat-menyurat; email: