Sains Malaysiana 51(10)(2022): 3437-3448

Modeling the Incomes of the Upper-Class Group in Malaysia using New Pareto-Type Distribution

(Pemodelan Pendapatan Isi Rumah Kelas Atas di Malaysia menggunakan Taburan Pareto Jenis Baharu)

ANIS SYAZWANI ABD RAOF1, MOHD AZMI HARON1,*, MUHAMMAD ASLAM MOHD SAFARI2 & ZAILAN SIRI1

1Institute of Mathematical Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

2Department of Mathematics and Statistics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

Diserahkan: 11 September 2021/Diterima: 23 Mei 2022

Abstract

The new Pareto-type distribution has been previously introduced as an alternative to the conventional Pareto distribution in modeling income distribution. It is claimed to provide better flexibility for mathematical simplicity of probability functions and has a more straightforward mathematical form. In this study, the new Pareto-type distribution is used to model the income of the Malaysian upper-class group. The threshold is determined using the fixed proportion technique and the maximum likelihood estimator method is used to estimate the shape parameter. Then, the goodness-of-fit of the fitted new Pareto model is measured using the coefficient of determination, R2 and Kolmogorov–Smirnov statistics. We also measure the income inequality among the Malaysian top income earners using the Lorenz curve, Gini and Theil indices based on the fitted new Pareto model. Finally, the new Pareto distribution is compared to alternative distributions to analyze which model can give the best fit for the data. Our analysis shows that the Pareto type-1 and the new Pareto models are well fitted to the top income data for all years considered. However, the new Pareto model provides better flexibility which covering more incomes in the upper tail of the distribution than the Pareto type-1 model.

Keywords: Gini index; income inequality; Lorenz curve; Pareto model; Theil index

Abstrak

Taburan Pareto baharu telah diperkenalkan sebagai alternatif kepada taburan Pareto konvensional dalam permodelan taburan pendapatan. Kelebihan menggunakan taburan Pareto baharu dapat dilihat dari segi bentuk fungsinya yang mudah dan lebih fleksibel dalam memodelkan data. Dalam kajian ini, taburan Pareto baharu digunakan untuk memodelkan data pendapatan isi rumah kelas atas di Malaysia. Anggaran nilai ambang dan nilai parameter bentuk bagi taburan Pareto baharu, masing-masing ditentukan menggunakan teknik pernisbahan tetap dan kaedah anggaran kebolehjadian maksimum. Seterusnya, kebagusan penyuaian taburan Pareto baharu terhadap data pendapatan kelas atas dinilai menggunakan pekali penentuan, R2 dan statistik Kolmogorov–Smirnov. Kajian ini juga mengukur ketaksamaan pendapatan antara golongan atas menggunakan keluk Lorenz, indeks Gini dan indeks Theil berdasarkan taburan Pareto baharu. Akhir sekali, perbandingan antara taburan Pareto baharu dan pelbagai taburan lain dilakukan bagi mengenal pasti taburan yang mampu memberikan penyuaian terbaik dalam menerangkan data pendapatan kelas atas. Hasil kajian mendapati kedua-dua taburan Pareto baharu dan Pareto jenis-1 mampu menerangkan data pendapatan kelas atas. Namun, taburan Pareto baharu memberikan kefleksibelan yang lebih baik dan taburan ini mampu untuk menerangkan data pendapatan yang lebih banyak berbanding taburan Pareto jenis-1.

Kata kunci: Indeks Gini; indeks Theil; keluk Lorenz; ketaksamaan pendapatan; model Pareto

RUJUKAN

Abdul Majid, M.H. & Ibrahim, K. 2021. Composite pareto distributions for modelling household income distribution in Malaysia. Sains Malaysiana 50(7): 2047-2058. https://doi.org/10.17576/jsm-2021-5007-19

Arcagni, A. & Porro, F. 2014. The graphical representation of inequality. Revista Colombiana de Estadística 37(2Spe): 419. https://doi.org/10.15446/rce.v37n2spe.47947

Bahari, Z., Mohd, S. & Hamat, A.F.C. 2015. Relationship between poverty and inequality: A case study of Bumiputera household in the northern states of Malaysia. Proceedingss of International Conference on Development and Socio Spatial Inequalities 1: 113-120. http://eprints.usm.my/35089/1/PPIK16.pdf

Banerjee, A., Yakovenko, V.M. & Matteo, T.D. 2006. A study of the personal income distribution in Australia. Physica A: Statistical Mechanics and Its Applications 370(1): 54-59. https://doi.org/10.1016/j.physa.2006.04.023

Bourguignon, M., Saulo, H. & Fernandez, R.N. 2016. A new pareto-type distribution with applications in reliability and income data. Physica A: Statistical Mechanics and Its Applications 457: 166-175. https://doi.org/10.1016/j.physa.2016.03.043

Brzezinski, M. 2014. Do wealth distributions follow power laws? Evidence from ‘Rich Lists’. Physica A: Statistical Mechanics and Its Applications 406: 155-162. https://doi.org/10.1016/j.physa.2014.03.052

Burden, R.L. & Faires, J.D. 2011. Numerical Analysis. Brooks/Cole, Cengage Learning.

Chakravarty, S.R. & Sarkar, P. 2020. New perspectives on the Gini and Bonferroni indices of inequality. Berlin, Heidelberg: Springer doi: https://doi.org/10.1007/s00355-021-01311-4

Charpentier, A. & Flachaire, E. 2019. Pareto Models for Top Incomes. HAL Archieve Ouverte, Id: hal-02145024

Clauset, A., Shalizi, C.R. & Newman, M.E.J. 2009. Power-law distributions in empirical data. SIAM Review 51(4): 661-703. https://doi.org/10.1137/070710111

Clementi, F. & Gallegati, M. 2005. Power law tails in the Italian personal income distribution. Physica A: Statistical Mechanics and Its Applications 350 (2-4): 427-438. https://doi.org/10.1016/j.physa.2004.11.038

Cowell, F.A. 2003. Theil, inequality and the structure of income distribution. Distributional Analysis Research Programme 67(May): 1-19.

Csörgo, M., Gastwirth, J.L. & Zitikis, R. 1998. Asymptotic confidence bands for the Lorenz and Bonferroni curves based on the empirical Lorenz curve. Journal of Statistical Planning and Inference 74(1): 65-91. https://doi.org/10.1016/s0378-3758(98)00103-7

Department of Statistics Malaysia. 2020. Laporan Survei Pendapatan Isi Rumah dan Kemudahan Asas 2019. pp. 3-57. https://www.dosm.gov.my/v1/index.php?r=column/cthemeByCat&cat=120&bul_id=TU00TmRhQ1N5TUxHVWN0T2VjbXJYZz09&menu_id=amVoWU54UTl0a21NWmdhMjFMMWcyZz09

Fellman, J. 2018. Income inequality measures. Theoretical Economics Letters 8(3): 557-574. https://doi.org/10.4236/tel.2018.83039.

Figueira, F.C., Moura, N.J. & Ribeiro, M.B. 2011. The Gompertz-Pareto income distribution. Physica A: Statistical Mechanics and Its Applications 390(4): 689-698. https://doi.org/10.1016/j.physa.2010.10.014

Giorgi, G.M. & Crescenzi, M. 2001. A proposal of poverty measures based on the Bonferroni Inequality Index. Metron 59(3-4): 3-16.

Hernández-Ramírez, E., Castillo-Mussot, M.D. & Hernández-Casildo, J. 2021. World per capita gross domestic product measured nominally and across countries with purchasing power parity: Stretched exponential or Boltzmann–Gibbs distribution? Physica A: Statistical Mechanics and Its Applications 568: 125690. https://doi.org/10.1016/j.physa.2020.125690

Islam, R., Ghani, A.B.A., Abidin, I.Z. & Rayaiappan, J.M. 2017. Impact on poverty and income inequality in Malaysia’s economic growth. Problems and Perspectives in Management 15(1): 55-62. https://doi.org/10.21511/ppm.15(1).2017.05

Kusnic, M.W. & Vanzo, J. 1980. Income inequality and the definition of income: The case of Malaysia. The RAND Corporation. https://www.rand.org/content/dam/rand/pubs/reports/2008/R2416.pdf

Law, S. & Tan, H. 2009. The role of financial development on income inequality in Malaysia. Journal of Economic Development 34(2): 153-168. http://www.jed.or.kr/full-text/34-2/8.pdf

Masseran, N., Safari, M.A.M., Lok, C.M. & Hussain, S.I. 2020. Analysis of inequality in the upper-tail of urban household incomes in Malaysia. AIP Conference Proceedings, 2266(October). https://doi.org/10.1063/5.0018073

Moura, N.J. & Ribeiro, M.B. 2009. Evidence for the Gompertz curve in the income distribution of Brazil 1978-2005. European Physical Journal B 67(1): 101-120. https://doi.org/10.1140/epjb/e2008-00469-1.

Oancea, B., Pirjol, D. & Andrei, T. 2018. A Pareto upper tail for capital income distribution. Physica A: Statistical Mechanics and Its Applications 492: 403-417. https://doi.org/10.1016/j.physa.2017.09.034

Pundir, S., Arora, S. & Jain, K. 2005. Bonferroni curve and the related statistical inference. Statistics and Probability Letters 75(2): 140-150. https://doi.org/10.1016/j.spl.2005.05.024.

Rashid, N.K.A., Rahizal, N.A. & Possumah, B.T. 2020. Does income difference cause different household expenditure consumption? International Journal of Innovation, Creativity and Change 12(12): 1314-1340.

Razak, F.A. & Shahabuddin, F.A. 2018. Malaysian household income distribution: A fractal point of view. Sains Malaysiana 47(9): 2187-2194.

Raqab, M.Z., Alkhalfan, L.A., Bdair, O.M. & Balakrishnan, N. 2019. Maximum likelihood prediction of records from 3-parameter Weibull distribution and some approximations. Journal of Computational and Applied Mathematics 356: 118-132. https://doi.org/10.1016/j.cam.2019.02.006

Safari, M.A.M., Masseran, N., Ibrahim, K. & Hussain, S.I. 2021. Measuring income inequality: A robust semi-parametric approach. Physica A: Statistical Mechanics and Its Applications 562: 125359. https://doi.org/10.1016/j.physa.2020.125359

Safari, M.A.M., Masseran, N., Ibrahim, K. & Al-Dhurafi, N.A. 2020. The power-law distribution for the income of poor households. Physica A: Statistical Mechanics and Its Applications 557: 124893. https://doi.org/10.1016/j.physa.2020.124893

Safari, M.A.M., Masseran, N. & Ibrahim, K. 2018a. A robust semi-parametric approach for measuring income inequality in Malaysia. Physica A: Statistical Mechanics and Its Applications 512: 1-13. https://doi.org/10.1016/j.physa.2018.08.029

Safari, M.A.M., Masseran, N. & Ibrahim, K. 2018b. Optimal threshold for Pareto tail modelling in the presence of outliers. Physica A: Statistical Mechanics and Its Applications 509: 169-180. https://doi.org/10.1016/j.physa.2018.06.007

Sarabia, J.M., Jordá, V. & Prieto, F. 2019. On a new Pareto-type distribution with applications in the study of income inequality and risk analysis. Physica A: Statistical Mechanics and Its Applications 527: 121277. https://doi.org/10.1016/j.physa.2019.121277.

Shakil, N.S.M., Mohd, S., Bahari, Z. & Hamat, A.F.C. 2015. Patterns of income distribution in the northern states of Malaysia: A life cycle approach. Proceedingss of International Conference on Development and Socio Spatial Inequalities 1980: 128-134.

*Pengarang untuk surat-menyurat; email: azmiharon@um.edu.my

 kandungan