Sains Malaysiana 51(3)(2022): 883-894

http://doi.org/10.17576/jsm-2022-5103-22

 

Fabrication of Magnesium-Carbonate Apatite by Conventional Sintering and Spark Plasma Sintering for Orthopedic Implant Applications

(Fabrikasi Magnesium-Karbonat Apatit oleh Pensinteran Konvensional dan Pensinteran Percikan Plasma untuk Aplikasi Implan Ortopedik)

 

IWAN SETYADI1,2, TOTO SUDIRO3, BAMBANG HERMANTO3, PRIMA RIZKY OKTARI4, ACHMAD FAUZI KAMAL4, AHMAD JABIR RAHYUSSALIM4, BAMBANG SUHARNO5 & SUGENG SUPRIADI6

 

1Department of Metallurgical and Materials Engineering, Faculty of Engineering, Universitas Indonesia, Depok, I 16424, Indonesia

  2Center for Material Technology, Agency for the Assessment and Application of Technology (BPPT)-Indonesia

  3Research Center for Physics (P2Fisika), Indonesian Institute of Sciences (LIPI), Indonesia  

4Department Orthopedic and Traumatology, Faculty of Medicine, Universitas Indonesia, Indonesia  

5Department of Metallurgical and Materials Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia  

6Department of Mechanical Engineering, Universitas Indonesia, Indonesia

 

Diserahkan: 27 April 2021/Diterima: 15 Ogos 2021

 

ABSTRACT

Magnesium-Carbonate Apatite (Mg-xCA) is one of the potential magnesium composites to be developed as an alternative biodegradable implant material. Several attempts were made to optimize its characteristics. In this study, Mg-xCA (x = 0, 5, 10, and 15% wt) was prepared by powder metallurgy through warm compaction (WC) and further densified by 2 sintering process methods, namely conventional sintering (CS) and spark plasma sintering (SPS). The characterization included density test, XRD test, microstructure test (OM and SEM-EDS-Mapping), microhardness test, and electrochemical test. The SPS process improves the characteristics of Mg-xCA better than the CS process. The SPS process can increase the relative density by about 0.7-2.4%, increase the hardness by about 2-13%, and reduce the corrosion rate by about 32-49% compared to the initial condition before sintering (WC). The SPS structure has a lower oxygen elemental content than the CS structure. The sintered process with SPS is considered effective for the fabrication of Mg-xCA powder-based composites compared to the CS process.

Keywords: Characterization; conventional sintering; magnesium-carbonate apatite; spark plasma sintering

 

ABSTRAK

Magnesium-Karbonat Apatit (Mg-xCA) adalah salah satu komposit magnesium yang berpotensi untuk dikembangkan sebagai bahan implan biodegradasi alternatif. Beberapa usaha dilakukan untuk mengoptimumkan ciri-cirinya. Dalam kajian ini, Mg-xCA (x = 0, 5, 10, dan 15% wt) disiapkan oleh metalurgi serbuk melalui pemadatan suam(WC) dan selanjutnya diperkecilkan dengan 2 kaedah proses pensinteran, iaitu pensinteran konvensional(CS) dan percikan plasma pensinteran(SPS). Pencirian tersebut merangkumi ujian kepadatan, ujianXRD, ujian struktur mikro (OM dan SEM-EDS-Pemetaan), ujian kekerasan mikro dan ujian elektrokimia. Proses SPS meningkatkan ciri Mg-xCA lebih baik daripada proses CS. Proses SPS dapat meningkatkan ketumpatan relatif sekitar 0.7-2.4%, meningkatkan kekerasan sekitar 2-13% dan mengurangkan kadar kakisan sekitar 32-49% dibandingkan dengan keadaan awal sebelum pensinteran(WC). Struktur SPS mempunyai kandungan unsur oksigen yang lebih rendah daripada strukturCS. Proses pensinteran denganSPS dianggap berkesan untuk pembuatan komposit berasaskan serbukMg-xCA berbanding dengan proses CS.

Kata kunci: Magnesium-karbonat apatit; pencirian; pensinteran konvensional; pensinteran plasma percikan

 

RUJUKAN

Ahmad Jabir Rahyussalim, Aldo Fransiskus Marsetio, Achmad Fauzi Kamal, Sugeng Supriadi, Iwan Setyadi, Pancar Muhammad Pribadi, Wildan Mubarok & Tri Kurniawati. 2021. Synthesis, structural characterization, degradation rate, and biocompatibility of magnesium-carbonate apatite (Mg-Co3Ap) composite and its potential as biodegradable orthopaedic implant base material. Journal of Nanomaterials 2021: 6615614. https://doi.org/10.1155/2021/6615614.

Ahmad Jabir Rahyussalim, Sugeng Supriadi, Achmad Fauzi Kamal, Aldo Fransiskus Marsetio & Pancar Muhammad Pribadi. 2019. Magnesium-carbonate apatite metal composite: Potential biodegradable material for orthopaedic implant. In AIP Conference Proceedings 2092: 20021. AIP Publishing LLC. https://doi.org/10.1063/1.5096689.

Annur, D. 2017. Powder metallurgy preparation of Mg-Ca Alloy for biodegradable implant application to. Journal of Physics: IOP Conference Series 817. https://doi.org/10.1088/1742-6596/817/1/012062.

Ayukawa Yasunori, Yumiko Suzuki, Kanji Tsuru, Kiyoshi Koyano & Kunio Ishikawa. 2015. Histological comparison in rats between carbonate apatite fabricated from gypsum and sintered hydroxyapatite on bone remodeling. BioMed Research International https://doi.org/10.1155/2015/579541.

ASTM E384-17. 2017. Standard Test Method for Microindentation Hardness of Materials.

ASTM. G102-89. 2015. Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements.

ASTM. G5-94. 2014. Standard Reference Test Method for Making Potentiodynamic Anodic Polarization Measurements.

Atmaja Surbakti, Maximillian Ch. Oley & Eko Prasetyo. 2017. Perbandingan antara penggunaan karbonat apatit dan hidroksi apatit pada proses penutupan defek kalvaria dengan menggunakan plasma kaya trombosit. Jurnal Biomedik (Jbm) 9(2): 107-114. https://doi.org/10.35790/jbm.9.2.2017.16359.

Center for Material Technology (BPPT). 2017. Technical Note GL3/Alkes.

Del Campo, R., Savoini, B., Muñoz, A., Monge, M.A. & Pareja, R. 2017. Processing and mechanical characteristics of magnesium-hydroxyapatite metal matrix biocomposites. Journal of the Mechanical Behavior of Biomedical Materials 69: 135-143. https://doi.org/10.1016/j.jmbbm.2016.12.023.

Del Campo, R., Savoini, B., Muñoz, A., Monge, M.A. & Garcés, G. 2014. Mechanical properties and corrosion behavior of Mg-HAP composites. Journal of the Mechanical Behavior of Biomedical Materials 39: 238-246. https://doi.org/10.1016/j.jmbbm.2014.07.014.

Doi, Y., Koda, T., Adachi, M., Wakamatsu, N., Goto, T., Kamemizu, H., Moriwaki, Y. & Suwa, Y. 1995. Pyrolysis-gas chromatography of carbonate apatites used for sintering. Journal of Biomedical Materials Research 29(11): 1451-1457. https://doi.org/10.1002/jbm.820291117.

Godavitarne, C., Robertson, A., Peters, J. & Rogers, B. 2017. Biodegradable materials. Orthopaedics and Trauma 31(5): 316-320. https://doi.org/10.1016/j.mporth.2017.07.011.

Gu, X-N. & Zheng, Y-F. 2010. A review on magnesium alloys as biodegradable materials. Frontiers of Materials Science in China 4(2): 111-115. https://doi.org/10.1007/s11706-010-0024-1.

Gu, X., Zhou, W., Zheng, Y., Dong, L., Xi, Y. & Chai, D. 2010. Microstructure, mechanical property, bio-corrosion and cytotoxicity evaluations of Mg/HA composites. Materials Science and Engineering: C 30(6): 827-832. https://doi.org/10.1016/j.msec.2010.03.016.

Haghshenas, M. 2017. Mechanical characteristics of biodegradable magnesium matrix composites: A review. Journal of Magnesium and Alloys 5(2): 189-201. https://doi.org/10.1016/j.jma.2017.05.001.

Hirokazu Nagai, Masako Kobayashi-Fujioka, Kenji Fujisawa, Go Ohe, Natsumi Takamaru, Kanae Hara, Daisuke Uchida, Tetsuya Tamatani, Kunio Ishikawa & Youji Miyamoto. 2015. Effects of low crystalline carbonate apatite on proliferation and osteoblastic differentiation of human bone marrow cells. Journal of Materials Science: Materials in Medicine 26(2): 1-8. https://doi.org/10.1007/s10856-015-5431-5.

Ishikawa, K. 2019. Carbonate apatite bone replacement: Learn from the bone. Journal of the Ceramic Society of Japan 127(9): 595-601. https://doi.org/10.2109/jcersj2.19042.

Iwan Setyadi, Aldo Fransiskus Marsetio, Achmad Fauzi Kamal, Rahyussalim, Sugeng Supriadi & Bambang Suharno. 2020a. Microstructure and microhardness of carbonate apatite particle-reinforced Mg composite consolidated by warm compaction for biodegradable implant application. Materials Research Express 7(5). https://doi.org/10.1088/2053-1591/ab7d70.

Iwan Setyadi, Pancar Muhammad Pribadi, Aldo Fransiskus Marsetio, Achmad Fauzi Kamal, Rahyusalim, Bambang Suharno & Sugeng Supriadi. 2020b. Characteristics investigation of the initial development of miniplate made from composite of magnesium/carbonate apatite fabricated by powder metallurgy method for biodegradable implant applications. In Key Engineering Materials 833 KEM: 194-198. Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/KEM.833.194.

Jaiswal, S., Manoj Kumar, R., Gupta, P., Kumaraswamy, M., Roy, P. & Lahiri, D. 2018. Mechanical, corrosion and biocompatibility behaviour of Mg-3Zn-HA biodegradable composites for orthopaedic fixture accessories. Journal of the Mechanical Behavior of Biomedical Materials 78: 442-454. https://doi.org/10.1016/j.jmbbm.2017.11.030.

Kingston Technical Software. n.d. Corrosion Rate Conversion. https://www.corrosion-doctors.org/Principles/Conversion.htm.

Kokubo, T., Kushitani, H., Sakka, S., Kitsugi, T. & Yamamuro, T. 1990. Solutions able to reproduce in vivo surface‐structure changes in bioactive glass‐ceramic A‐W3. Journal of Biomedical Materials Research 24(6): 721-734. https://doi.org/10.1002/jbm.820240607.

Kuśnierczyk, K. & Basista, M. 2017. Recent advances in research on magnesium alloys and magnesium–calcium phosphate composites as biodegradable implant materials. Journal of Biomaterials Applications 31(6): 878-900. https://doi.org/10.1177/0885328216657271.

Landi, E., Celotti, G., Logroscino, G. & Tampieri, A. 2003. Carbonated hydroxyapatite as bone substitute. Journal of the European Ceramic Society 23(15): 2931-2937. https://doi.org/10.1016/S0955-2219(03)00304-2.

Linhart, W., Peters, F., Lehmann, W., Schwarz, K., Schilling, A.F., Amling, M., Rueger, J.M. & Epple, M. 2000. Biologically and chemically optimized composites of carbonated apatite and polyglycolide as bone substitution materials. J. Biomed. Mater. Res. 54(2): 162-171.

Liu, R., Wang, W., Chen, H., Lu, Z., Zhao, W. & Zhang, T. 2019. Densification of pure magnesium by spark plasma sintering-discussion of sintering mechanism. Advanced Powder Technology 30(11): 2649-2658. https://doi.org/10.1016/j.apt.2019.08.012.

Madupalli, H., Pavan, B. & Tecklenburg, M.M.J. 2017. Carbonate substitution in the mineral component of bone: Discriminating the structural changes, simultaneously imposed by carbonate in A and B sites of apatite. Journal of Solid State Chemistry 255: 27-35. https://doi.org/10.1016/j.jssc.2017.07.025.

Masayuki Kanazawa, Kanji Tsuru, Naoyuki Fukuda, Yuta Sakemi, Yasuharu Nakashima & Kunio Ishikawa. 2017. Evaluation of carbonate apatite blocks fabricated from dicalcium phosphate dihydrate blocks for reconstruction of rabbit femoral and tibial defects. Journal of Materials Science: Materials in Medicine 28(6): 85. https://doi.org/10.1007/s10856-017-5896-5.

Mohammad Khodaei, Farahnaz Nejatidanesh, Mohammad Javad Shirani, Srinivasan Iyengar, Hossein Sina & Omid Savabi. 2020. Magnesium/nano-hydroxyapatite composite for bone reconstruction: The effect of processing method. Journal of Bionic Engineering 17(1): 92-99. https://doi.org/10.1007/s42235-020-0007-6.

Mahmoud Abbas Ibraheem, Abd El Aziz El Sayed Fouda, Mohamed Talaat Rashad & Fawzy Nagy Sabbahy. 2012. Sweet corrosion inhibition on API 5L-B pipeline steel. International Scholarly Research Notices 2012: 892385. https://doi.org/10.5402/2012/892385.

NN n.d. Spark Plasma Sintering. http://www.subtech.com/dokuwiki/doku.php? id = spark_plasma_sintering. Accessed on December 3, 2019.

Radha, R. & Sreekanth. D. 2017. Insight of magnesium alloys and composites for orthopedic implant applications - A review. Journal of Magnesium and Alloys 5(3): 286-312. https://doi.org/10.1016/j.jma.2017.08.003.

Siska Wiwanto, Lilies Dwi Sulistyani, Fourier Dzar Eljabbar Latief, Sugeng Supriadi, Bambang Pontjo Priosoeryanto & Benny Syariefsyah Latief. 2018. The experiment of magnesium ECAP miniplate as alternative biodegradable material (on male white New Zealand rabbits). In AIP Conference Proceedings, 1933: 20013. AIP Publishing LLC. https://doi.org/10.1063/1.5023947.

Sunil, B.R., Ganapathy, C., Sampath Kumar, T.S. & Chakkingal, U. 2014. Processing and mechanical behavior of lamellar structured degradable magnesium–Hydroxyapatite implants. Journal of the Mechanical Behavior of Biomedical Materials 40: 178-189. https://doi.org/10.1016/j.jmbbm.2014.08.016.

Supriadi, S., Kristianto, H., Whulanza, Y., Saragih, A.S., Dhelika, R., Latief, B.S. & Taufiq, T. 2018. Fabrication of magnesium ECAP based maxillary miniplate-typed implant through the method of micro forming. IOP Conference Series: Materials Science and Engineering 432: 012037. https://doi.org/10.1088/1757-899X/432/1/012037.

Witte, F., Feyerabend, F., Maier, P., Fischer, J., Störmer, M., Blawert, C., Dietzel, W. & Hort, N. 2007. Biodegradable magnesium-Hydroxyapatite metal matrix composites. Biomaterials 28(13): 2163-2174. https://doi.org/10.1016/j.biomaterials.2006.12.027.

Xiong, G., Nie, Y., Ji, D., Li, J., Li, C., Li, W., Zhu, Y., Luo, H. & Wan, Y. 2016. Characterization of biomedical hydroxyapatite/magnesium composites prepared by powder metallurgy assisted with microwave sintering. Current Applied Physics 16(8): 830-836. https://doi.org/10.1016/j.cap.2016.05.004.

Youness, R.A., Taha, M.A. & Ibrahim, M.A. 2017. Effect of sintering temperatures on the in vitro bioactivity, molecular structure and mechanical properties of titanium/carbonated hydroxyapatite nanobiocomposites. Journal of Molecular Structure 1150: 188-195. https://doi.org/10.1016/j.molstruc.2017.08.070.

Yunita Sari & Siska Titik Dwiyati. 2015. Korosi H2S dan CO2 pada peralatan statik di industri minyak dan gas. Jurnal Konversi Energi dan Manufaktur UNJ 2(1): 18-22.

Zheng, Y.F., Gu, X.N. & Witte, F. 2014. Biodegradable metals. Materials Science and Engineering: R: Reports 77: 1-34. https://doi.org/10.1016/j.mser.2014.01.001.

 

*Pengarang untuk surat-menyurat; email: i1setyadi2810@gmail.com

 

 

   

sebelumnya