Sains Malaysiana 51(4)(2022): 1197-1212

http://doi.org/10.17576/jsm-2022-5104-20

 

Microwave Synthesis of Blue Emissive N-Doped Carbon Quantum Dots as a Fluorescent Probe for Free Chlorine Detection

(Sintesis Gelombang Mikro N-Terdop Titik Kuantum Karbon Pancaran Biru sebagai Prob Pendarfluor untuk Pengesanan Klorin Bebas)

 

MELISSA ASHA LARSSON1, PRAVENA RAMACHANDRAN1, PURIM JARUJAMRUS2,3 & HOOI LING LEE1*

 

1Nanomaterials Research Group, School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

2Department of Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, Thailand

3Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, Thailand

 

Diserahkan: 8 Jun 2021/Diterima: 8 September 2021

 

Abstract

Blue emissive N-doped carbon quantum dots (N-CQDs) were prepared through a convenient and sustainable microwave synthesis method using citric acid monohydrate (CA) and urea as carbon and nitrogen sources, respectively, with an optimum molar ratio of 1:3 (CA:Urea). The surface functional groups, morphology, and hydrodynamic characteristics of N-CQDs were analysed with Fourier-transform infrared (FTIR) spectroscopy, high-resolution transmission electron microscopy (HRTEM) and dynamic light scattering (DLS), respectively. The as-synthesised N-CQDs with a quantum yield of 14.8%, exhibited excitation-independent fluorescence emission at 443 nm due to surface-state-induced fluorescence, with an optimum excitation wavelength at 360 nm. The N-CQDs were spherical, with an average particle size of 7.29 ± 3.91 nm based on HRTEM analysis. However, DLS analysis showed that the hydrodynamic size (293.0 ± 110.8 nm) was larger than the average particle size due to the presence of hydrophilic polymer chains and abundant surface groups on the N-CQDs. The free chorine-induced fluorescence quenching of N-CQDs at pH 9 denotes the sensitivity of N-CQDs towards detection of free chlorine in the form of hypochlorite (ClO-) ion, providing the limit of detection (LOD) of 0.4 mM and limit of quantification (LOQ) of 1.2 mM. The fluorescence quenching effect in the N-CQDs caused by the quencher (ClO-) is attributed to the dynamic quenching mechanism, via an intersystem crossing. The low selectivity of N-CQDs towards various ions justified N-CQDs' selectivity as a free chlorine fluorescent probe that can be used for wastewater testing due to its high range sensitivity.

 

Keywords: Fluorescent probe; free chlorine detection; microwave synthesis; N-doped carbon quantum dots (N-CQDs)

 


 

Abstrak

Pancaran biru titik kuantum karbon terdop N (N-CQDs) telah disediakan melalui kaedah gelombang mikro yang mudah dan lestari dengan menggunakan asid sitrik monohidrat (CA) dan urea masing-masing sebagai sumber karbon dan nitrogen dengan nisbah molar optimum 1:3 (CA:Urea). Kumpulan berfungsi permukaan, morfologi dan ciri hidrodinamik N-CQDs telah dianalisis dengan spektroskopi transformasi Fourier inframerah (FTIR), mikroskop pancaran elektron resolusi tinggi (HRTEM) dan penyerakan cahaya dinamik (DLS), masing-masing. N-CQDs yang disintesis dengan 14.8% hasil kuantum telah mengeluarkan pelepasan pendarfluor pengujaan-bebas pada 443 nm disebabkan pendarfluor teraruh keadaan permukaan dengan gelombang pengujaan optimum pada 360 nm. N-CQDs adalah berbentuk sfera dengan purata saiz zarah 7.29 ± 3.91 nm berdasarkan analisis HRTEM. Namun, analisis DLS telah menunjukkan bahawa saiz hidrodinamik (293.0 ± 110.8 nm) adalah lebih besar daripada purata saiz zarah disebabkan kehadiran rantaian polimer hidrofil dan banyak kumpulan berfungsi permukaan pada N-CQDs. Lindapan pendarfluor N-CQDs teraruh klorin bebas pada pH 9 menunjukkan kepekaan N-CQDs terhadap pengesanan klorin bebas dalam bentuk ion hipoklorit (ClO-), yang memberi had pengesanan (LOD) 0.4 mM dan had pengkuantitian (LOQ) 1.2 mM. Kesan lindapan pendarfluor di N-CQDs yang disebabkan oleh pelindap (ClO-) adalah dikaitkan dengan mekanisme lindapan dinamik, melalui lintasan antara sistem. Kepekaan N-CQDs yang rendah terhadap beberapa ion mewajarkan keterpilihan N-CQDs sebagai prob pendarfluor klorin bebas yang boleh digunakan bagi pengujian air sisa disebabkan julat kepekaan yang tinggi.

 

Kata kunci: Pengesanan klorin bebas; prob pendarfluor; sintesis gelombang mikro; titik kuantum karbon terdop N (N-CQDs)

 

RUJUKAN

Bandi, R., Dadigala, R., Gangapuram, B.R. & Guttena, V. 2018. Green synthesis of highly fluorescent nitrogen–doped carbon dots from Lantana camara berries for effective detection of lead (II) and bioimaging. Journal of Photochemistry and Photobiology B: Biology 178: 330-338.

Braslavsky, S.E. 2007. Glossary of terms used in photochemistry (IUPAC Recommendations 2006). Pure and Applied Chemistry 79(3): 293-465.

Bunkoed, O. & Kanatharana, P. 2015. Mercaptopropionic acid capped CdTe quantum dots as fluorescence probe for the determination of salicylic acid in pharmaceutical products. Luminescence 30(7): 1083-1089.

Chen, P., Wei, W.Z. & Yao, S.Z. 1999. Different valency chlorine species analysis by non-suppressed ion-chromatography with double cell quartz crystal detector. Talanta 49(3): 571-576.

Crook, J., Ammerman, D., Okun, D. & Matthews, R. 2012. EPA Guidelines for Water Reuse. p.643.

de Medeiros, T.V., Manioudakis, J., Noun, F., Macairan, J.R., Victoria, F. & Naccache, R. 2019. Microwave-assisted synthesis of carbon dots and their applications. Journal of Materials Chemistry C 7(24): 7175-7195.

Ding, H. & Xiong, H.M. 2015. Exploring the blue luminescence origin of nitrogen-doped carbon dots by controlling the water amount in synthesis. RSC Advances 5(82): 66528-66533.

Ding, H., Yu, S.B., Wei, J.S. & Xiong, H.M. 2016. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 10(1): 484-491.

Du, Y. & Guo, S. 2016. Chemically doped fluorescent carbon and graphene quantum dots for bioimaging, sensor, catalytic and photoelectronic applications. Nanoscale 8(5): 2532-2543.

Duan, R., Li, C., Liu, S., Liu, Z., Li, Y., Zhu, J. & Hu, X. 2015. A selective fluorescence quenching method for the determination of trace hypochlorite in water samples with nile blue A. Journal of the Taiwan Institute of Chemical Engineers 50: 43-48.

Emmanuel, E., Keck, G., Blanchard, J.M., Vermande, P. & Perrodin, Y. 2004. Toxicological effects of disinfections using sodium hypochlorite on aquatic organisms and its contribution to AOX formation in hospital wastewater. Environment International 30(7): 891-900.

Geddes, C.D., Apperson, K., Karolin, J. & Birch, D.J. 2001. Chloride-sensitive fluorescent indicators. Analytical Biochemistry 293(1): 60-66.

Hallaj, T., Amjadi, M., Manzoori, J.L. & Shokri, R. 2015. Chemiluminescence reaction of glucose-derived graphene quantum dots with hypochlorite, and its application to the determination of free chlorine. Microchimica Acta 182(3): 789-796.

Heidelberger, M. & Treffers, H.P. 1942. Quantitative chemical studies on hemolysins: I. The estimation of total antibody in antisera to sheep erythrocytes and stromata. The Journal of General Physiology 25(4): 523.

Hussain, S.N., Asghar, H.M.A., Sattar, H., Brown, N.W. & Roberts, E.P.L. 2015. Free chlorine formation during electrochemical regeneration of a graphite intercalation compound adsorbent used for wastewater treatment. Journal of Applied Electrochemistry 45(6): 611-621.

Kaasalainen, M., Aseyev, V., von Haartman, E., Karaman, D.Ş., Mäkilä, E., Tenhu, H., Rosenholm, J. & Salonen, J. 2017. Size, stability, and porosity of mesoporous nanoparticles characterized with light scattering. Nanoscale Research Letters 12: 74.

Kalaiyarasan, G., Hemlata, C. & Joseph, J. 2019. Fluorescence turn-on, specific detection of cystine in human blood plasma and urine samples by nitrogen-doped carbon quantum dots. ACS Omega 4(1): 1007-1014.

Kim, T.H., Ho, H.W., Brown, C.L., Cresswell, S.L. & Li, Q. 2015. Amine-rich carbon nanodots as a fluorescence probe for methamphetamine precursors. Analytical Methods 7(16): 6869-6876.

Koide, Y., Urano, Y., Hanaoka, K., Terai, T. & Nagano, T. 2011. Development of an Si-rhodamine-based far-red to near-infrared fluorescence probe selective for hypochlorous acid and its applications for biological imaging. Journal of the American Chemical Society 133(15): 5680-5682.

Lakowicz, J.R. 2006. Mechanisms and dynamics of fluorescence quenching. In Principles of Fluorescence Spectroscopy. Boston: Springer. pp. 331-351.

Lakowicz, J.R. 1999. Quenching of fluorescence. In Principles of Fluorescence Spectroscopy. Boston: Springer. pp. 237-265.

Liu, M.L., Chen, B.B., Li, C.M. & Huang, C.Z. 2019. Carbon dots: Synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chemistry 21(3): 449-471.

Liu, W., Li, C., Sun, X., Pan, W., Yu, G. & Wang, J. 2017. Highly crystalline carbon dots from fresh tomato: UV emission and quantum confinement. Nanotechnology 28(48): 485705.

Lou, Z., Li, P. & Han, K. 2015. Redox-responsive fluorescent probes with different design strategies. Accounts of Chemical Research 48(5): 1358-1368.

Malvern Panalytical Ltd. 2018. Dynamic Light Scattering: An Introduction in 30 Minutes. Technical Note (MRK656-01). pp. 1-8.

National Institute for Occupational Safety and Health (NIOSH). 1997. Pocket Guide to Chemical Hazards. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, Cincinnati, OH.

Pobozy, E., Pyrzynska, K., Szostek, B. & Trojanowicz, M. 1995. Flow-injection spectrophotometric determination of free residual chlorine in waters with 3, 3′-dimethylnaphtidine. Microchemical Journal 51(3): 379-386.

Qin, J., Zhang, L. & Yang, R. 2019. Solid pyrolysis synthesis of excitation-independent emission carbon dots and its application to isoniazid detection. Journal of Nanoparticle Research 21: 59.

Qu, D., Zheng, M., Li, J., Xie, Z. & Sun, Z. 2015. Tailoring color emissions from N-doped graphene quantum dots for bioimaging applications. Light: Science and Applications 4(12): e364-e364.

Reichardt, C., Wen, C., Vogt, R.A. & Crespo-Hernández, C.E. 2013. Role of intersystem crossing in the fluorescence quenching of 2-aminopurine 2’-deoxyriboside in solution. Photochemical and Photobiological Sciences 12(8): 1341-1350.

Shanmugaraj, K. & Ilanchelian, M. 2017. Visual and optical detection of hypochlorite in water samples based on etching of gold/silver alloy nanoparticles. New Journal of Chemistry 41(23): 4130-14136.

Shepherd, J., Hilderbrand, S.A., Waterman, P., Heinecke, J.W., Weissleder, R. & Libby, P. 2007. A fluorescent probe for the detection of myeloperoxidase activity in atherosclerosis-associated macrophages. Chemistry and Biology 14(11): 1221-1231.

Simões, E.F., Leitão, J.M. & da Silva, J.C. 2016. Carbon dots prepared from citric acid and urea as fluorescent probes for hypochlorite and peroxynitriteMicrochimica Acta 183(5): 1769-1777.

Song, Y., Zhu, S., Xiang, S., Zhao, X., Zhang, J., Zhang, H., Fu, Y. & Yang, B. 2014. Investigation into the fluorescence quenching behaviors and applications of carbon dots. Nanoscale 6(9): 4676-4682.

Sun, Z., Li, X., Wu, Y., Wei, C. & Zeng, H. 2018. Origin of green luminescence in carbon quantum dots: Specific emission bands originate from oxidized carbon groups. New Journal of Chemistry 42(6): 4603-4611.

Wakigawa, K., Gohda, A., Fukushima, S., Mori, T., Niidome, T. & Katayama, Y. 2013. Rapid and selective determination of free chlorine in aqueous solution using electrophilic addition to styrene by gas chromatography/mass spectrometry. Talanta 103: 81-85.

Wang, B. & Anzai, J.I. 2015. A facile electrochemical detection of hypochlorite ion based on ferrocene compounds. International Journal of Electrochemical Science 10(4): 3260-3268.

Wang, T., Wang, A., Wang, R., Liu, Z., Sun, Y., Shan, G., Chen, Y. & Liu, Y. 2019. Carbon dots with molecular fluorescence and their application as a “turn-off” fluorescent probe for ferricyanide detection. Scientific Reports 9(1): 1-9.

Watanabe, T., Idehara, T., Yoshimura, Y. & Nakazawa, H. 1998. Simultaneous determination of chlorine dioxide and hypochlorite in water by high-performance liquid chromatography. Journal of Chromatography A 796(2): 397-400.

Xia, C., Tao, S., Zhu, S., Song, Y., Feng, T., Zeng, Q., Liu, J. & Yang, B. 2018. Hydrothermal addition polymerization for ultrahigh‐yield carbonized polymer dots with room temperature phosphorescence via nanocomposite. Chemistry - A European Journal 24(44): 11303-11308.

Xia, C., Zhu, S., Feng, T., Yang, M. & Yang, B. 2019. Evolution and synthesis of carbon dots: From carbon dots to carbonized polymer dots. Advanced Science 6(23): 1901316.

Yadav, R., Odera, K., Rai, A., Noguchi, A., Takahashi, R. & Mishra, L. 2019. A stable and highly sensitive fluorescent probe for detection of hypochlorite ion in vitro and in living cells. Chemistry Letters 48(2): 110-113.

Yan, F., Sun, Z., Zhang, H., Sun, X., Jiang, Y. & Bai, Z. 2019. The fluorescence mechanism of carbon dots, and methods for tuning their emission color: A review. Microchimica Acta 186(8): 583.

Yee, L.F., Abdullah, M.P., Ata, S. & Ishak, B. 2006. Dissolved organic matter and its impact on the chlorine demand of treated water. Malaysian Journal of Analytical Sciences 10(2): 243-250.

Yoo, D., Park, Y., Cheon, B. & Park, M.H. 2019. Carbon dots as an effective fluorescent sensing platform for metal ion detection. Nanoscale Research Letters 14(1): 1-13.

Yu, W.W., Qu, L., Guo, W. & Peng, X. 2003. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chemistry of Materials 15(14): 2854-2860.

Yuan, Y., Huang, X., Liu, S., Yang, J., Duan, R. & Hu, X. 2016. Determination of hypochlorite by quenching the fluorescence of 1-pyrenylboronic acid in tap water. RSC Advances 6(4): 3393-3398.

Zhang, Y., He, Y.H., Cui, P.P., Feng, X.T., Chen, L., Yang, Y.Z. & Liu, X.G. 2015. Water-soluble, nitrogen-doped fluorescent carbon dots for highly sensitive and selective detection of Hg 2+ in aqueous solution. RSC Advances 5(50): 40393-40401.

Zhao, P. & Zhu, L. 2018. Dispersibility of carbon dots in aqueous and/or organic solvents. Chemical Communications 54(43): 5401-5406.

Zu, F., Yan, F., Bai, Z., Xu, J., Wang, Y., Huang, Y. & Zhou, X. 2017. The quenching of the fluorescence of carbon dots: A review on mechanisms and applications. Microchimica Acta 184(7): 1899-1914.

Zulfajri, M., Dayalan, S., Li, W.Y., Chang, C.J., Chang, Y.P. & Huang, G.G. 2019. Nitrogen-doped carbon dots from Averrhoa carambola fruit extract as a fluorescent probe for methyl orange. Sensors 19(22): 5008.

 

*Pengarang untuk surat-menyurat; email: hllee@usm.my

 

     

sebelumnya