Sains Malaysiana 51(4)(2022): 1245-1259

http://doi.org/10.17576/jsm-2022-5104-23

 

Recycle Glass Waste as a Host for Solidification of Oil Sludge

(Sisa Kaca Kitar Semula sebagai Perumah untuk Pemejalan Enap Cemar Minyak)

 

NUR SYUHADA IZZATI RUZALI1, SYAZWANI MOHD FADZIL1,2*, WOOYONG UM3,4, MOHD IDZAT IDRIS1,2 & ROHYIZA BA’AN5

 

1Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

2Nuclear Technology Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

3Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), 77 Chongam-lo, Nam-gu, Pohang 790-784, Republic of Korea

4Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Chongam-lo, Nam-gu, Pohang 790-784, Republic of Korea

5Waste and Environmental Technology Division, Malaysian Nuclear Agency, 43000 Kajang, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 9 Jun 2021/Diterima: 7 September 2021

 

Abstract

The production of oil sludge per year is more than 1 billion tonne that mainly generated from the production, refinery, storage, and transportation of petroleum. Disposal of oil sludge had been a great issue since the waste consists of highly concentrated of Natural Occurring Radioactive Material (NORM). Therefore, to overcome this problem, this study aims to investigate used and recycle borosilicate glass as a host for solidification of oil sludge. The oil sludge and glass host were mixed into different compositions, melted at high temperature (1,100 °C -1,200 °C) for 1 h in alumina crucible and rapidly cooling in the room temperature, by reducing the radioactivity levels of NORM. This study found out that, the optimum waste loading was obtained at a range of 20-25 wt% of oil sludge and 75-80 wt% of the glass host at 1,200 °C. All the glass waste was produced as an amorphous phase material with small amount of crystalline phase such as SiO2, Ba4-Al2-O7, AlPO4, Al2O3 and Fe3Zn10, which observed to be appeared during the cooling process. The major elements of the glass waste were found to be distributed uniformly based on energy dispersive X-ray spectroscopy (EDX) mapping. Furthermore, the dissolution rate of indicator element increased due to the increase of pH solution, while the normalized releases of B, Si, and Na during product consistency tests were low and below the standard glass limit, which shows high durability of the glass due to lower release of glass elements. Therefore, this study emphasized the suitability of recycle borosilicate glass as a host for immobilization of oil sludge prior for disposal, while deploying high temperature technology.

 

Keywords: Borosilicate glass; hazardous waste; naturally occurring radioactive material (NORM); oil sludge; vitrification process

 

Abstrak

Penghasilan enap cemar minyak daripada industri petroleum adalah melebihi 1 bilion tan pada setiap tahun semasa proses penghasilan, penyulingan, penyimpanan dan pengangkutan. Pelupusan enap cemar minyak telah menjadi isu besar kerana sisa enap cemar mengandungi unsur yang berbahaya. Oleh itu, bagi mengatasi masalah ini, enap cemar minyak dan sisa kaca dicampur menerusi beberapa komposisi yang berbeza dan dipanaskan pada suhu yang tinggi (1,100 °C -1,200 °C) selama 1 jam dan disejukkan pada suhu bilik bagi mengurangkan bahan berbahaya seperti radionuklid tabii (NORM). Keputusan kajian mendapati muatan sisa yang optimum adalah dalam julat 20-25 bt% enap cemar dan 75-80 bt% perumah kaca yang dipanaskan pada suhu 1,200 °C. Kesemua bentuk sisa kaca akhir mempunyai fasa amorfus dengan fasa hablur yang kecil seperti SiO2, Ba4-Al2-O7, AlPO4, Al2O3 dan Fe3Zn10, yang mungkin terhasil semasa proses penyejukan. Unsur utama tertabur dengan sekata menerusi pemetaan spektroskopi sinar-X penyebaran tenaga (EDX). Selain itu, kadar larutan unsur penunjuk meningkat dengan peningkatan pH larutan, manakala pembebasan ternormal oleh B, Si, dan Na semasa ujian larut lesap adalah rendah dan di bawah had piawaian kaca, yang menunjukkan ketahanan kaca yang tinggi disebabkan pelepasan unsur kaca yang rendah. Oleh itu, kajian ini menekankan kesesuaian kaca borosilikat yang dikitar semula untuk digunakan sebagai perumah untuk memegunkan sisa enap cemar minyak sebelum dilupuskan dengan menggunakan teknologi bersuhu tinggi.

 

Kata kunci: Enap cemar minyak; kaca borosilikat; proses pengacaan; radionuklid tabii (NORM); sisa berbahaya

 

RUJUKAN

Abdel-Sabour, M.F. 2015. NORM in waste derived from oil and gas production. In Middle East Waste Management Summit. Promedia International Limited, Cairo. p. 25.

Abu-baker, A.O.K., Elfaki, A.E., Osman, A.H., Elfaki, A.A.A. & Elobaid, R.A. 2016. Measurement of activity concentration absorbed dose rate and annual effective dose of natural occurring radioactive material (NORM) in samples encountered during oil & gas industry. IOSR Journal of Applied Physics 8(5): 89-95.

Aida, I.S.M., Rozita, O. & Salmiaton, A. 2012. Vitrification of petrochemical sludge containing heavy metal. SEGi Review 5(1): 89-94.

Aja, O.C., Al-Kayiem, H.H., Zewge, M.G. & Joo, M.S. 2016. Overview of hazardous waste management status in Malaysia. In Management of Hazardous Wastes, edited by Saleh, H.E.M. & Rahman, R.A. London: InTech Publisher.

Al-Ghamdi, R.A. & Sitepu, H. 2018. Characterization of sludge deposits from refineries and gas plants: Prerequisite result requirements to facilitate chemical cleaning of the particular equipment. International Journal of Corrosion 2018: Article ID. 4121506.

Ali, M.M.M., Zhao, H., Li, Z. & Maglas, N.N.M. 2019. Concentrations of TENORMs in the petroleum industry and their environmental and health effects. RSC Advances 9(67): 39201-39229.

Ali, A.M., Abu-Hassan, M.A., Ibrahim, R.R.K., Zaini, M.A.A., Abdulkarim, B.I., Hussein, A.S., Su, S.M. & Mohd Halim, M.A.I. 2017a. Characterization of petroleum sludge from refinery industry biological wastewater treatment unit. The International Journal of Engineering and Science 6(9) 61-65.

Ali, K.K., Shafik, S.S. & Husain, H.A. 2017b. Radiological assessment of NORM resulting from oil and gas production processing in south Rumaila oil field, southern Iraq. Iraq Journal of Science 58(2C): 1037-1050.

Allam, K.A. & Bakr, W.F. 2015. Assessment of the exposure dose during removal of TENORM sludge from crude oil storage tanks. Arab Journal of Nuclear Science and Applications 48(2): 90-93.

ASTM C-1285-14. 2002. Standard Test Methods for Determining Chemical Durability the Product Consistency Test (PCT). West Conshohocken: American Society for Testing and Materials (ASTM).

Awwad, N.S., Attallah, M.F., El-Afifi, E.M., Ibrahim, H.A. & Aly, H.F. 2015. Overview about different approaches of chemical treatment of NORM and TE-NORM produced Oil exploitation. In Advances in Petrochemicals, edited by Patel, V. London: InTech Publisher. pp. 85-113.

Bakr, M.A., Elattar, A.L., Salama, S., Ahmed, M.H. & Zahran, E.M. 2018. NAA for trace elemental analysis of sludge samples from different oil sites in the Egyptian eastern desert. Journal of Radiation and Nuclear Application 3(3): 163-170.

Bakr, W.F. 2010. Assessment of radiological impact of oil refining industry. Journal of Environmental Radioactivity 101(3): 237-243.

Bakri, J. & Siregar, R. 2003. Radiation and radioactivity levels survey of naturally occurring radioactive materials (NORM) at PT Caltex Pacific Indonesia. In Proceedings of the Seminar on Environmental and Radiation Safety Aspect at Non-Nuclear Industry 42: 15-25.

Bednarek, J., Ptacek, P., Svec, J., Soukal, F. & Parizek, L. 2016. Inhibition of hydrogen evolution in aluminium-phosphate refractory binders. Procedia Engineering 151: 87-93.

Canoba, A.C., Gnoni, G.A. & Truppa, W.A. 2007. NORM measurements in the oil and gas industry in Argentina. In 5th International Symposium on Naturally Occurring Radioactive Material. p. 33.

Chen, S., Shu, X., Tang, H., Mao, X., Xu, C. & Lu, X. 2019. Microwave sintering of uranium-contaminated soil for nuclear test and chemical stability. Ceramics International 45(10): 13334-13339.

Darko, E.O., Kpeglo, D.O., Akaho, H., Schandorf, C., Adu, P., Faanu, A., Abankwah, E., Lawluvi, H. & Awudu, R. 2012. Radiation doses and hazards from processing of crude oil at the Tema oil refinery in Ghana. Radiation Protection Dosimetry 148(3): 318-328.

Fadzil, S.M., Hrma, P., Schweiger, M.I. & Riley, B.J. 2015. Liquids temperature and chemical durability of selected glasses to immobilize rare earth oxides waste. Journal of Nuclear Materials 465: 657-663.

Farid, O.M., Ojovan, M.I., Massoud, A. & Abdel Rahman, R.O. 2019. Assessment of initial leaching characteristics of alkali-borosilicate glasses for nuclear waste immobilization materials. Materials 12(9): 1462.

Frankel, G.S., Vienna, J.D., Lian, J., Scully, J.R., Gin, S., Ryan, J.V., Wang, J., Kim, S.H., Windl, W. & Du, J. 2018. A comparative review of the aqueous corrosion of glasses, crystalline ceramics and metals. Npj Materials Degradation 2(15): 1-17.

Garner, J., Cairns, J. & Read, D. 2017. NORM in the East Midlands' oil and gas producing region of the UK. Journal of Environmental Radioactivity 150: 49-56.

Gopang, I.A., Mahar, A.S., Akhtar, K.S., Omer, M. & Azeem, M.S. 2016. Characterization of the sludge deposits in crude oil storage tanks. Journal of Faculty of Engineering and Technology 23(1): 57-64.

Hasanuzzaman, M., Rafferty, A., Sajja, M. & Olabi, A.G. 2016. Properties of glass materials. In Reference Module in Materials Science and Materials Engineering, edited by Sereni, J.G.R. Amsterdam: Elsevier.

Hu, G., Li, J. & Zeng, G. 2013. Recent development in the treatment of oily sludge from petroleum industry: A review. Journal of Hazardous Materials 261: 470-490.

Hui, K., Tang, J., Lu, H., Xi, B., Qu, C. & Li, J. 2020. Status and prospect of oil recovery from oily sludge: A review. Arabian Journal of Chemistry 13(8): 6523-6543.

IAEA. 1996. Measurement of Radionuclides in Food and the Environment. Vienna: International Atomic Energy Agency (IAEA).

Iwaszko, J., Zawada, A., Prezerada, I. & Lubas, M. 2018. Structural and microstructural aspects of asbestos-cement waste vitrification. Spectrochimica Acra Part A; Molecular and Biomolecular Spectroscopy 195: 95-102.

Jain, V. 2019. Chemical Durability of Nuclear Waste Glasses-A Review. Center for Nuclear Waste Regulatory Analyses, Southwest Research Institute. San Antonio, Texas: United States Nuclear Regulatory Commission.

Johnson, O.A. & Affam, A.C. 2019. Petroleum sludge treatment and disposal: A review. Environment Engineering Research 24(2): 191-201.

Johnson, O.A., Madzlan, N., Kamaruddin, I. & Oloruntobi, O.O. 2015. Building blocks from petroleum sludge: Leachability and toxicity studies. International Journal of Applied Engineering Research 10(24): 45479-45481.

Karaahmet, O. & Cicek, B. 2019. Waste recycling of cathode ray tube glass through industrial production of transparent ceramic frits. Journal of the Air & Waste Management Association 69(10): 1258-1266.

Kim, M., Corkhill, C.L., Hyatt, N.C. & Heo, J. 2018. Development, characterization, and dissolution behavior of calcium-aluminoborate glass wasteform to immobilize rare-earth oxides. Scientific Reports 8(1): 1-8.

Kim, M., Kim, H.G., Kim, S., Yoon, J.H., Sung, J.Y., Jin, J.S., Lee, M.H., Kim, C.W., Heo, J. & Hong, K.S. 2020. Leaching behaviors and mechanisms of vitrified forms for the low-level radioactive solid wastes. Journal of Hazardous Materials 384: 121296.

Lonergan, C.E. & Neeway, J.J. 2017. A Critical Review of Ion Exchange in Nuclear Waste Glasses to Support the Immobilized Low-Activity Waste Integrated Disposal Facility Rate Model.  United States: Pacific Nortwest National Laboratory.

Manaktala, H.K. 1992. An Assessment of Borosilicate Glass as a High-Level Waste Form. Texas: Center for Nuclear Regulatory Analyses San Antonia.

Meegoda, J.N., Ezeldin, A.S., Fang, H.Y. & Inyang, H.I. 2003. Waste immobilization technologies. Practice Periodical of Hazardous, Toxic and Radioactive Waste Management 7(1): 46-58.

Meor, Y.M.S., Hishamuddin, H. & Choo, T.F. 2007. Characterization study of oil sludge solid sediment. Journal of Nuclear and Related Technologies 4(1-2): 25-28.

Misra, V. & Pandey, S.D. 2005. Hazardous waste, impact on health and environment for development of better waste management strategies in future in India. Environment International 31(3): 417-431.

Mykowska, A. & Hupka, J. 2014. Natural radioactivity of solid and liquid phases from shale oil and gas prospecting in Pomerania. Polish Journal of Environmental Studies 23(6): 2137-2142.

Nada, F.K. & Omer, H.A. 2016. Measurement of natural radioactivity in al-Dora refinery by using (HPGe) detector. Advance in Applied Science Research 7(4): 197-208.

Nuha, T.A. 2012. Determination of pollutant elements and heavy metals in petroleum sludge and scale at Heglig Field, Sudan. Sudan Academy of Science. Masters Thesis. (Unpublished).

Ojovan, M.I. & Batyukhnova, O.G. 2007. Glasses for Nuclear Waste Immobilization. In 2007 Waste Management Symposium. Tucson, AZ. February 25 - March 1.

Ojovan, M.I., Petrov, V.A. & Yudintsev, S.V. 2021. Glass crystalline materials as advanced nuclear wasteforms. Sustainability 13(8): 4117.

Ojovan, N.V., Startceva, L.V., Barinov, A.S., Ojovan, M.I., Bacon, D.H., McGrail, B.P. & Vienna, J.D. 2004. Product consistency test of fully radioactive high-sodium content borosilicate glass K-26. Materials Research Society 824: 1-6.

Oniki, T., Nabemoto, T. & Fukui, T. 2018. Vitrification technology for treating low-level waste from nuclear facilities. IHI Engineering Review 51(1): 25-31.

Pei, S.L., Chen, T.L., Pan, S.Y., Yang, Y.L., Sun, Z.H. & Li, Y.L. 2020. Addressing environmental sustainability of plasma vitrification technology for stabilization of municipal solid waste incineration fly ash. Journal of Hazardous Materials 398: 122959.

Philemon, Z.B., Martin, B.N. & Christelle, S.J.E. 2016. Characterization of oily sludge from Cameroon petroleum refinery. International Journal of Emerging Engineering Research and Technology 4(3): 34-38.

Puad, M.H.A. & Noor, M.M.Y. 2003. Behaviours of 232Th, 238U, 228Ra and 226Ra on combustion of crude oil terminal sludge. Journal of Environmental Radioactivity 73(3): 289-305.

Rani, N., Shrivastava, J.P. & Bajpa, R.K. 2010. Corrosion mechanism in the obsidian and its comparison with waste glass for long-term performance assessment in the geological repository. The Open Corrosion Journal 3(1): 16-27.

Ruzali, N.S.I., Alwi, N., Idris, M.I., Mohd Fadzil, S. & Ba’an, R. 2021. Pemegunan bahan radioaktif dalam enap cemar minyak menggunakan kaca sebagai kaedah alternatif. Sains Malaysiana 50(8): 2419-2431.

Shakhatreh, S. 2015. Properties and suitability of east Aqaba area feldspar for glass industries in Jordan. Journal of Materials Science Research 4(2): 22-33.

Shu, X., Li, Y., Huang, W., Chen, S., Xu, C., Zhang, S., Li, B., Wang, X., Qing, Q. & Lu, X. 2020. Rapid vitrification of uranium-contaminated soil: Effect and mechanism. Environmental Pollution 263: 114539.

Stefan, R., Culea, E. & Pascuta, P. 2012. The effect of copper ions addition on structural and optical properties of zinc borate glasses. Journal of Non-Crystalline Solids 358(4): 839-846.

Stoyanova, L.T., Fraga, D., Barrachina, E., Calvet, I. & Carda, J.B. 2019. Vitrification and sinter-crystallization of fly ash with glass cullet. Material Science & Engineering International Journal 3(5): 189-193.

USEPA. 2021. Radiation Health Effect. United States: United States Environmental Protection Agency (USEPA).

USEPA. 2017. Leaching Environmental Assessment Framework (LEAF) How-to Guide. United States: United States Environmental Protection Agency (USEPA).

USEPA. 1996. SW-846 Test Method 3052. United States: United States Environmental Protection Agency (USEPA).

Vienna, J.D. & Spearing, D.R. 2003. Environmental Issue and Waste Management Technologies in the Ceramic and Nuclear Industries IX. Hoboken: Wiley.

Xhixha, G., Baldoncini, M., Callegari, I., Colonna, F., Hasani, F., Mantovani, F., Shala, F., Strati, V. & Kaceli, M.X. 2015. A century of oil and gas exploration in Albania: Assessment of naturally occurring radioactive materials (NORMs). Chemosphere 139: 30-39.

Zakariya, N.I. & Kahn, M. 2014. Benefits and biological effects of ionizing radiation. Scholars Academic Journal of Biosciences 2(9): 583-591.

 

*Pengarang untuk surat-menyurat; email: syazwanimf@ukm.edu.my

 

     

sebelumnya