Sains Malaysiana 51(5)(2022): 1399-1410

http://doi.org/10.17576/jsm-2022-5105-11

 

Penghasilan Selulosa Bakteria daripada Kordial Minuman Tamat Tempoh dan Potensi Pengunaannya sebagai Gel Selulosa Anti-Pemerangan

(Production of Bacterial Cellulose from Expired Cordial Beverages and Their Potential Use as Anti-Bright Cellulose Gel)

 

FABIANA FRANCIS1, ZUR AIN AQILLAH BINTI ZAKI1 & NURUL AQILAH MOHD ZAINI1,2,*

 

1Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

2Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 3 September 2021/Diterima: 7 Oktober 2021

 

ABSTRAK

Selulosa adalah polimer karbohidrat yang mudah diperoleh daripada sumber tumbuhan dan dihasilkan melalui proses fermentasi pelbagai jenis bakteria seperti Komagataeibacter xylinus. Walau bagaimanapun, selulosa bakteria mempunyai ketulenan dan kapasiti pegangan air yang lebih tinggi berbanding selulosa daripada sumber tumbuhan dan oleh itu, ia mempunyai potensi untuk digunakan sebagai gel selulosa aktif dalam industri makanan seperti gel anti-pemerangan. Minuman kordial yang telah tamat tempohnya merupakan media fermentasi yang baik bagi penghasilan selulosa bakteria kerana mengandungi kandungan gula yang tinggi dan sekaligus mengurangkan masalah pengurusan sisa minuman. Oleh itu, objektif kajian ini adalah untuk menghasilkan selulosa bakteria sebagai gel anti-pemerangan daripada minuman kordial yang yang telah tamat tempohnya dalam model jus epal segar. Tahap pertama kajian adalah membandingkan penghasilan selulosa bakteria daripada minuman kordial yang sudah tamat tempohnya tanpa dan dengan penambahan ekstrak yis. Hasil kajian menunjukkan minuman kordial dengan penambahan yis menghasilkan berat selulosa basah tertinggi iaitu 140 g/L, penurunan nilai pH sebanyak 1.72 dan penurunan kepekatan gula dan protein sebanyak 12.44 mg/mL dan 0.93 mg/mL selepas 14 hari fermentasi. Gel selulosa yang dihasilkan kemudiannya digunakan sebagai gel anti-pemerangan (penambahan 0.1% asid askorbik) pada peringkat kedua kajian ini. Hasil kajian menunjukkan bahawa indeks pemerangan dalam jus epal yang mengandungi gel selulosa anti-pemerangan telah berjaya mencegah pemerangan dalam jus epal segar (15.01) berbanding dengan indeks pemerangan dalam jus epal kawalan (25.58). Kesimpulannya, selulosa bakteria dapat dihasilkan daripada minuman kordial yang telah tamat tempohnya dan berpotensi sebagai gel anti-pemerangan bagi mengurangkan pemerangan enzim dalam jus epal segar.

Kata kunci: Gel anti-pemerangan; Komagataeibacter xylinus; minuman kordial tamat tempoh; selulosa bakteria

 

ABSTRACT

Cellulose is a carbohydrate polymer that is readily available from plant and produced by variety of bacteria such as Komagataeibacter xylinus through fermentation. However, bacterial cellulose has higher purity and water holding capacity than plant-based cellulose and can potentially be used as an active gel in food applications such as anti-browning gel. Expired cordial drinks could be an excellent fermentation medium for bacterial cellulose production due to its high sugar content and simultaneously mitigate wastewater issues. Therefore, the objective of this research was to produce bacterial cellulose as anti-browning gels from expired cordial drinks in fresh apple juice model system. The first stage of the study was to compare the production of bacterial cellulose from expired cordial drinks without and with the addition of yeast extract. Results of cordial with the addition of yeast extract showed the highest wet weight of cellulose with 140 g/L, decreased in pH value by 1.72, and decreased of sugar and protein concentrations by 12.44 mg/mL and 0.93 mg/mL, respectively, after 14 days. The produced cellulose pellicle was then used as anti-browning gel (addition of 0.1 % ascorbic acid) in the second stage of this study. Results showed that the browning index in apple juice containing the anti-browning cellulose gel has successfully prevented browning in apple juice (15.01) compared to the browning index in a control apple juice (25.58). In conclusion, bacterial cellulose can be produced from expired cordial drinks and has potential as an anti-browning gel to reduce enzymatic browning in fresh apple juice.

Keywords: Anti-browning gel; bacterial cellulose; expired cordial drinks; Komagataeibacter xylinus

 

RUJUKAN

Ali, H., El-Gizawy, A., El-bassiouny, R. & Saleh, M. 2014. Browning inhibition mechanisms by cysteine, ascorbic acid and citric acid, and identifying PPO-catechol-cysteine reaction products. Journal of Food Science Technology 52(6): 3651-3659.

Alabbosh, K.F.S., Hazrin Chong, N.H. & Al Balawi, A.N. 2021. Agricultural wastes as a carbon or nitrogen source for production of bacterial cellulose. A mini review. Poll. Res. 40(2): 429-437.

AL-Kalifawi, E. & Hassan, I.A. 2014. Factors influence on the yield of bacterial cellulose of kombucha (khubdat humza). Baghdad Science Journal 11(3): 1420-1428.

Al Qadr Imad Wan-Mohtar, W.A., Halim-Lim, S.A., Balamurugan, J.P., Saad, M.Z.M., Azizan, N.A.Z., Jamaludin, A.A. & Ilham, Z. 2021. Effect of sugar-pectin-citric acid pre-commercialization formulation on the physicochemical, sensory, and shelf-life properties of musa Cavendish banana jam. Sains Malaysiana 50(5): 1329-1342.

Andritsou, V., De Melo, E.M., Tsouko, E., Ladakis, M., Maragkoudaki, S., Koutinas, A.A. & Matharu, A.S. 2018. Synthesis and characterization of bacterial cellulose from citrus-based sustainable resources. ACS Omega 3(8): 10365-10373.

Aswini, K., Gopal, N.O. & Uthandi, S. 2020. Optimized culture conditions for bacterial cellulose production by Acetobacter senegalensis MA1. BMC Biotechnology 20(1): 1-16.

Betlej, I., Zakaria, S., Krajewski, K.J. & Boruszewski, P. 2021. Bacterial cellulose-properties and its potential application. Sains Malaysiana 50(2): 493-505.

Costa, A.F.S., Almeida, F.C.G., Vinhas, G.M. & Sarubbo, L.A. 2017. Production of bacterial cellulose by Gluconacetobacter hansenii using corn steep liquor as nutrient sources. Frontiers in Microbiology 8: 2027.

Diedrich, J.K. & Julian, R.R. 2010. Site-selective fragmentation of peptides and proteins at quinone-modified cysteine residues investigated by ESI-MS. Analytical Chemistry 82(10): 4006-4014.

El, S., Koraichi, S., Latrache, H. & Hamadi, F. 2012. Scanning electron microscopy (SEM) and environmental SEM: Suitable tools for study of adhesion stage and biofilm formation. Scanning Electron Microscopy 13(6): 163-166.

Garg, M. 2019. Treatment and recycling of wastewater from beverages/the soft drink bottling industry. In Advances in Biological Treatment of Industrial Waste Water and their Recycling for a Sustainable Future. Singapore. Springer. pp. 333-361.

Goh, W.N., Rosma, A., Kaur, B., Fazilah, A., Karim, A.A. & Bhat, R. 2012. Fermentation of black tea broth (kombucha): I. effects of sucrose concentration and fermentation time on the yield of microbial cellulose. International Food Research Journal 19(1): 109-117.

Jagannath, A., Kalaiselvan, A., Manjunatha, S.S., Raju, P.S. & Bawa, A.S. 2008. The effect of pH, sucrose and ammonium sulphate concentrations on the production of bacterial cellulose (Nata-de-coco) by Acetobacter xylinum. World Journal of Microbiology and Biotechnology 24(11): 2593-2599.

Kaanane, A. & Labuza, T.P. 2012. Time and temperature effect on stability of Moroccan processed orange juice during storage. Journal of Food Science 53(5): 1470-1473.

Kurosumi, A., Sasaki, C., Yamashita, Y. & Nakamura, Y. 2009. Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydrate Polymers 76(2): 333-335.

Lazim, A.M., Osman, A.H. & Mokhtarom, M. 2018. Absorption ability of gamma irridiated bacterial cellulose hydrogel using Langmuir and Freundlich isotherme. Sains Malaysiana 47(4): 715-723.

Lee, K.Y., Buldum, G., Mantalaris, A. & Bismarck, A. 2020. More than meets the eye in bacterial cellulose: Biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromolecular Bioscience 14(1): 10-32.

Li, Z., Chen, S.Q., Cao, X., Li, L., Zhu, J. & Yu, H. 2021. Effect of pH buffer and carbon metabolism on the yield and mechanical properties of bacterial cellulose produced by Komagataeibacter hansenii ATCC 53582. Journal of Microbiology and Biotechnology 31(3): 429-438.

Mæhre, H.K., Dalheim, L., Edvinsen, G.K., Elvevoll, E.O. & Jensen, I.J. 2018. Protein determination method matters. Foods 7(1): 16-22.

Mansor, N., Ramli, S., Azhari, S.H. & Abd Rahim, M.H. 2020. Effects of different preservation treatments on nutritional profile on juices from different sugar cane varieties. Sains Malaysiana 49(2): 283-291.

Masuko, T., Minami, A., Iwasaki, N., Majima, T., Nishimura, S.I. & Lee, Y.C. 2005. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Analytical Biochemistry 339(1): 69-72.

Matsuoka, M., Tsuchida, T., Matsushita, K., Adachi, O. & Yoshinaga, F. 2005. A synthetic medium for bacterial cellulose production by Acetobacter xylinum subsp. sucrofermentans. Bioscience. Biotechnology, and Biochemistry 60(4): 575-579.

Matsuo, Y., Miura, L.A., Araki, T. & Yoshie-Stark, Y. 2019. Proximate composition and profiles of free amino acids, fatty acids, minerals and aroma compounds in Citrus natsudaidai peel. Food Chemistry 279: 356-363.

Moniri, M., Moghaddam, A.B., Azizi, S., Rahim, R.A., Ariff, A.B., Saad, W.Z., Navaderi, M. & Mohamad, R. 2017. Production and status of bacterial cellulose in biomedical engineering. Nanomaterials 7(9): 1-26.

Naomi, R., Idrus, R.B.H. & Fauzi, M.B. 2020. Plant-vs. Bacterial-derived cellulose for wound healing: A review. International Journal of Environmental Research and Public Health 17(18): 1-25.

Naritomi, T., Kouda, T., Yano, H. & Yoshinaga, F. 1998. Effect of lactate on bacterial cellulose production from fructose in continuous culture. Journal of Fermentation and Bioengineering 85(1): 89-95.

Pa’e, N., Zahan, K.A. & Muhamad, I.I. 2011. Production of biopolymer from Acetobacter xylinum using different fermentation methods. International Journal of Engineering & Technology 11(5): 90-98.

Quijano, L. 2017. Embracing bacterial cellulose as a catalyst for sustainable fashion. Liberty University. Ph.D. Thesis (Unpublished).

Raghavendran, V., Asare, E. & Roy, I. 2020. Bacterial cellulose: Biosynthesis, production, and applications. Advances in Microbial Physiology 77(11): 89-138.

Rapdu, Y.D., Momdad, D.Q.G., Suhsudwarq, V., Vijal, Z. & Vidyhu, F. 2006. Production of bacterial cellulose from fermented soya beans waste. Baghdad Science Journal 192(23): 137-143.

Rasouli, M., Ostavar-Ravari, A. & Shokri-Afra, H. 2014. Characterization and improvement of phenol-sulfuric acid microassay for glucose-based glycogen. European Review for Medical and Pharmacological Sciences 18(4): 2020-2024.

Revin, V., Liyaskina, E., Nazarkina, M., Bogatyreva, A. & Shchankin, M. 2018. Cost-effective production of bacterial cellulose using acidic food industry by-products. Brazilian Journal of Microbiology 49(Supplement 1): 151-159.

Rodzi, R.M., Nopiah, Z.M., Ezlin, N. & Basri, A. 2018. Risk management framework towards zero waste strategy for Malaysia TVET institution. Eurasian Journal of Analytical Chemistry 13(6): 505-511.

San-Valero, P., Abubackar, H.N., Veiga, M.C. & Kennes, C. 2020. Effect of pH, yeast extract and inorganic carbon on chain elongation for hexanoic acid production. Bioresource Technology 300: 122659.

Sari, A.M., Budianto, F.A., Nursiwi, A., Sanjaya, A.P., Utami, R. & Zaman, M.Z. 2021. Study of Acetobacter xylinum FNCC 0001 fermentation kinetics using artificial media containing various carbon and nitrogen concentrations. In IOP Conference Series: Earth and Environmental Science 828(1): 012004.

Sheltami, R.M., Abdullah, I., Ahmad, I., Dufresne, A. & Kargarzadeh, H. 2012. Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydrate Polymers 88(2): 772-779.

Son, H.J., Heo, M.S., Kim, Y.G. & Lee, S.J. 2001. Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolated Acetobacter sp.A9 in shaking cultures. Biotechnology and Applied Biochemistry 33(1): 1.

Sreeramulu, G., Zhu, Y. & Knol, W. 2000. Kombucha fermentation and its antimicrobial activity. Journal of Agricultural and Food Chemistry 48(6): 2589-2594.

Subhashree, S.N., Sunoj, S., Xue, J. & Bora, G.C. 2017. Quantification of browning in apples using colour and textural features by image analysis. Food Quality and Safety 1(3): 221-226.

Supian, N.N.I., Zakaria, J., Amin, K.N.M., Mohamad, S. & Mohamad, S.F.S. 2021. Effect of fermentation period on bacterial cellulose production from oil palm frond (OPF) juice. In IOP Conference Series: Materials Science and Engineering. IOP Publishing. 1092(1): 012048.

Suwannapinunt, N., Burokorn, J. & Thaenthanee, S. 2007. Effect of culture conditions on bacterial cellulose (BC) production from Acetobacter xylinum TISTR976 and physical properties of BC parchment paper. Journal of Science & Technology 14(4): 357-365.

Swingler, S., Gupta, A., Gibson, H., Kowalczuk, M., Heaselgrave, W. & Radecka, I. 2021. Recent advances and applications of bacterial cellulose in biomedicine. Polymers 13(3): 412.

Torán-Pereg, P., del Noval, B., Valenzuela, S., Martinez, J., Prado, D., Perisé, R. & Arboleya, J.C. 2021. Microbiological and sensory characterization of kombucha SCOBY for culinary applications. International Journal of Gastronomy and Food Science 23: 100314.

Yodsuwan, N., Owatworakit, A., Ngaokla, A., Tawichai, N. & Soykeabkaew, N. 2012. Effect of carbon and nitrogen sources on bacterial cellulose production for bionanocomposite materials. In Conference: The 1st MFUIC. Mae Fah Luang University.

Zhao, H., Li, J. & Zhu, K. 2018. Bacterial cellulose production from waste products and fermentation conditions optimization. In IOP Conference Series: Materials Science and Engineering 394(2): 45-47.

 

*Pengarang surat-menyurat; email: nurulaqilah@ukm.edu.my

 

 

     

sebelumnya