Sains Malaysiana 51(5)(2022): 1545-1556

http://doi.org/10.17576/jsm-2022-5105-22

 

Prestasi Bahan Polimer Komposit Dicetak menggunakan Pemodelan Pemendapan Bersatu: Suatu Ulasan Ringkas

(Performance of Printed Composite Polymer Materials using Unified Deposition Modeling: A Brief Review)

 

NISA NAIMA KHALID, NABILAH AFIQAH MOHD RADZUAN*, ABU BAKAR SULONG & FARHANA MOHD FOUDZI

 

Precision Research Group, Department of Mechanical & Manufacturing Engineering, Faculty Engineering & Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 2 Julai 2021/Diterima: 7 Oktober 2021

 

ABSTRAK

Penambahan kandungan pengisi polimer komposit dapat meningkatkan kekonduksian elektrik dan terma yang baik, serta mempunyai kekuatan tegangan dan modulus yang tinggi telah memperluaskan aplikasi dalam industri peranti elektronik. Walau bagaimanapun, penambahan kandungan pengisi yang kurang daripada 20 bt.% akan mengakibatkan ketidaksempurnaan dalam penyebaran serta terdapat gumpalan pengisi ke dalam komposit. Ulasan kajian ini adalah untuk mengenal pasti pengaruh penambahan kandungan pengisi bagi bahan konduktif polimer komposit menggunakan percetakan 3D terhadap sifat elektrik, terma dan mekanikal. Ulasan ini merangkumi penggunaan bahan konduktif polimer komposit yang dibentuk melalui kaedah Pemodelan Pemendapan Bersatu (FDM) yang merupakan salah satu daripada percetakan 3D. Proses percetakan 3D yang dilapisi oleh lapisan demi lapisan akan menghasilkan struktur objek yang kompleks serta proses pembuatan yang cepat telah memberi sumbangan kepada penghasilan konduktif polimer komposit. Kekonduksian elektrik dapat ditingkatkan dengan penambahan kandungan pengisi sehingga 50 bt.%. Selain itu, penambahan kandungan pengisi yang dapat menawarkan permukaan yang lebih berkesan antara permukaan pengisi dan matriks telah meningkatkan suhu penghabluran (Tc) dan suhu puncak penghabluran (Tp) dalam sifat terma serta nilai kekuatan tegangan dan modulus dalam sifat mekanik. Penambahan kandungan pengisi polimer komposit sehingga 50 bt.% dapat meningkatkan kesesuaian bahan untuk digunakan pada peranti elektronik.

Kata kunci: Polimer komposit; pemodelan pemendapan bersepadu; sifat mekanikal; sifat terma

 

ABSTRACT

The addition of filler content into polymer composite can improve electrical and thermal conductivity, while the resulting high tensile strength and modulus values have expanded its application in the electronic device industry. However, the addition of a filler less than 20 wt.% resulted in imperfections in the dispersion and agglomeration of filler within the composite. The aim of this study was to identify the influence of the addition of filler content into composite polymer conductive materials using 3D printing to determine the electrical, thermal, and mechanical properties. The scope of this study covers the use of composite polymer materials using Fused Deposition Modeling (FDM) method in 3D printing. The layer-by-layer element of the 3D printing process produces complex object structures and its rapid manufacturing processes contributes significantly to the production of conductive polymer composite. The study found that electrical conductivity can be improved with the addition of filler content. In addition, the addition of filler content offers a more effective surface between the filler surface and the matrix increased the crystallisation temperature (Tc) and crystallisation peak temperature (Tp) in terms of the thermal properties, as well as the tensile strength and modulus values ​​in terms of the mechanical properties. The approach provided in this review study was that the addition of filler content of up to 50 wt.% in polymer composite can improve the suitability of the material to be used in electronic devices.

Keywords: Conductive polymer composites; filler content; 3D printing

 

RUJUKAN

Abbass, O.A., Salih, A.I. & Al Hurmuzy, O.M. 2020. Study of the mechanical and physical properties of bio-composite material based on wheat starch and wheat straw fibers. In IOP Conference Series: Materials Science and Engineering. IOP. 012075. http://dx.doi.org/10.1088/1757-899X/745/1/012075

Abdalla, F.H., Mutasher, S.A., Khalid, Y.A., Sapuan, S.M., Hamouda, A.M.S., Sahari, B.B. & Hamdan, M.M. 2007. Design and fabrication of low cost filament winding machine. Materials & Design 28(1): 234-239.

Agarwal, H., Pandey, R. & Bhat, S.D. 2020. Improved polymer electrolyte fuel cell performance with membrane electrode assemblies using modified metallic plate: Comparative study on impact of various coatings. International Journal of Hydrogen Energy 45(37): 18731-18742.

Al-Saleh, M.H. & Sundararaj, U. 2009. A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon 47(1): 2-22.

Al Abadi, H., Thai, H.T., Paton-Cole, V. & Patel, V.I. 2018. Elastic properties of 3D printed fibre-reinforced structures. Composite Structures 193: 8-18.

Alemour, B., Yaacob, M.H., Lim, H.N. & Hassan, M.R. 2018. Review of electrical properties of graphene conductive composites. International Journal of Nanoelectronics and Materials 11(4): 371-398.

An, H.J., Kim, J.S., Kim, K.Y., Lim, D.Y. & Kim, D.H. 2014. Mechanical and thermal properties of long carbon fiber-reinforced polyamide 6 composites. Fibers and Polymers 15(11): 2355-2359.

Angelopoulos, P.M., Samouhos, M. & Taxiarchou, M., 2021. Functional fillers in composite filaments for fused filament fabrication; A review. Materials Today: Proceedings 37: 4031-4043.

Bahrami, B., Ayatollahi, M.R., Sedighi, I., Pérez, M.A. & Garcia-Granada, A.A. 2020. The effect of in-plane layer orientation on mixed-mode I-II fracture behavior of 3D-printed poly-carbonate specimens. Engineering Fracture Mechanics 231: 107018.

Bai, J., Goodridge, R.D., Yuan, S., Zhou, K., Chua, C.K. & Wei, J. 2015. Thermal influence of CNT on the polyamide 12 nanocomposite for selective laser sintering. Molecules 20(10): 19041-19050.

Bao, S.P. & Tjong, S.C. 2008. Mechanical behaviors of polypropylene/carbon nanotube nanocomposites: The effects of loading rate and temperature. Materials Science and Engineering A 485(1-2): 508-516.

Barkoula, N.M., Alcock, B., Cabrera, N.O. & Peijs, T. 2008. Fatigue properties of highly oriented polypropylene tapes and all-polypropylene composites. Polymers and Polymer Composites 16(2): 101-113.

Blanco, I.  2020. The use of composite materials in 3D printing. Journal of Composites Science 4(2): 42.

Blok, L.G., Longana, M.L., Yu, H. & Woods, B.K.S. 2018. An investigation into 3D printing of fibre reinforced thermoplastic composites. Additive Manufacturing 22(2010): 176-186.

Borba Marchetto, D., Carneiro Moreira, D. & Ribatski, G. 2019. A review on polymer heat sinks for electronic cooling applications. In Proceedings of the 17th Brazilian Congress of Thermal Sciences and Engineering. ENCIT. pp. 25-28.

Cai, C., Tey, W.S., Chen, J., Zhu, W., Liu, X., Liu, T., Zhao, L. & Zhou, K. 2021. Comparative study on 3D printing of polyamide 12 by selective laser sintering and multi jet fusion. Journal of Materials Processing Technology 288: 116882.

Cesano, F., Zaccone, M., Armentano, I., Cravanzola, S., Muscuso, L., Torre, L., Kenny, J.M., Monti, M. & Scarano, D. 2016. Relationship between morphology and electrical properties in PP/MWCNT composites: Processing-induced anisotropic percolation threshold. Materials Chemistry and Physics 180: 284-290.

Chen, Y., Jansen, K., Zhang, H., Romero Rodriguez, C., Gan, Y., Çopuroğlu, O. & Schlangen, E. 2020. Effect of printing parameters on interlayer bond strength of 3D printed limestone-calcined clay-based cementitious materials: An experimental and numerical study. Construction and Building Materials 262: 120094.

Choi, Y.H., Kim, C.M., Jeong, H.S. & Youn, J.H. 2016. Influence of bed temperature on heat shrinkage shape error in FDM additive manufacturing of the ABS-engineering plastic. World Journal of Engineering and Technology 4(3): 186-192.

Costa, M.L., Rezende, M.C. & de Almeida, S.F.M. 2006. Effect of void content on the moisture absorption in polymeric composites. Polymer - Plastics Technology and Engineering 45(6): 691-698.

Çuvalci, H., Erbay, K. & İpek, H. 2014. Investigation of the effect of glass fiber content on the mechanical properties of cast polyamide. Arabian Journal for Science and Engineering 39(12): 9049-9056.

El-Safty, S. 2018. Effect of speed of loading on compressive strength and flexural strength of dental resin-composites. Egyptian Dental Journal 64(1): 625-633.

Espera, A.H., Dizon, J.R.C., Chen, Q. & Advincula, R.C. 2019. 3D-printing and advanced manufacturing for electronics. Progress in Additive Manufacturing 4(3): 245-267.

Ganesh Sarvankar, S. & Yewale, S.N. 2019. Additive manufacturing in automobile industry. International Journal of Research in Aeronautical and Mechanical Engineering 7(4): 1-10.

Garzón, C. & Palza, H. 2014. Electrical behavior of polypropylene composites melt mixed with carbon-based particles: Effect of the kind of particle and annealing process. Composites Science and Technology 99: 117-123.

Gebisa, A.W. & Lemu, H.G. 2019. Influence of 3D printing FDM process parameters on tensile property of ultem 9085. Procedia Manufacturing 30: 331-338.

Gong, M., Zhang, L. & Wan, P. 2020. Polymer nanocomposite meshes for flexible electronic devices. Progress in Polymer Science 107: 101279.

He, Z., Yan, Y. & Zhang, Z. 2020. Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: A review. Energy 261: 119223.

Hemanth, R., Sekar, M. & Suresha, B. 2014. Effects of fibers and fillers on mechanical properties of thermoplastic composites. Indian Journal of Advances in Chemical Science 2: 28-35.

Hendlmeier, A., Simon, Ž., Chutani, A. & Henderson, L.C. 2020. Generating short carbon fiber polyamide-6 composites from continuous carbon fiber - A preliminary examination of surface treatment and sizing effects. Composites Part A: Applied Science and Manufacturing 138: 106058.

Hine, P., Broome, V. & Ward, I. 2005. The incorporation of carbon nanofibres to enhance the properties of self reinforced, single polymer composites. Polymer 46(24): 10936-10944.

Hoerber, J., Glasschroeder, J., Pfeffer, M., Schilp, J., Zaeh, M. & Franke, J. 2014. Approaches for additive manufacturing of 3D electronic applications. Procedia CIRP 17: 806-811.

Hu, D., Liu, H. & Ma, W. 2020. Rational design of nanohybrids for highly thermally conductive polymer composites. Composites Communications 21: 100427.

Idumah, C.I., Ogbu, J.E., Ndem, J.U. & Obiana, V. 2019. Influence of chemical modification of kenaf fiber on xGNP-PP nano-biocomposites. SN Applied Sciences 1(10): 1-11.

Ingrassia, T., Nigrelli, V., Ricotta, V. & Tartamella, C. 2017. Process parameters influence in additive manufacturing. In Advances on Mechanics, Design Engineering and Manufacturing, edited by Eynard, B., Salvatore, V.N., Oliveri, M., Peris-Fajarnes, G. & Rizzuti, S. New York: Springer. pp. 261-270.

Iragi, M., Pascual-González, C., Esnaola, A., Lopes, C.S. & Aretxabaleta, L. 2019. Ply and interlaminar behaviours of 3D printed continuous carbon fibre-reinforced thermoplastic laminates; effects of processing conditions and microstructure. Additive Manufacturing 30: 100884.

Jankovics, D. & Barari, A. 2019. Customization of automotive structural components using additive manufacturing and topology optimization. IFAC-PapersOnLine 52(10): 212-217.

Karsli, N.G. & Aytac, A. 2013. Tensile and thermomechanical properties of short carbon fiber reinforced polyamide 6 composites. Composites Part B: Engineering 51: 270-275.

Kausar, A. 2020. Advances in carbon fiber reinforced polyamide-based composite materials. Advances in Materials Science 19(4): 67-82.

Khosravani, M.R. & Reinicke, T. 2020. Effects of raster layup and printing speed on strength of 3D-printed structural components. Procedia Structural Integrity 28: 720-725.

Lall, P., Dornala, K., Lowe, R. & Foley, J. 2016. Survivability assessment of electronics subjected to mechanical shocks up to 25,000g. In Proceedings of the 15th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, ITherm 2016. Iterms. pp. 507-518.

Letcher, T. 2016. Imece2014-39379 material property testing of 3D-printed specimen. In Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition. IMECE2014. pp. 1-8.

Liang, J.Z., Du, Q., Tsui, G.C.P. & Tang, C.Y. 2016. Tensile properties of graphene nano-platelets reinforced polypropylene composites. Composites Part B: Engineering 95: 166-171.

Liao, S.H., Yen, C.Y., Weng, C.C., Lin, Y.F., Ma, C.C.M., Yang, C.H., Tsai, M.C., Yen, M.Y., Hsiao, M.C., Lee, S.J., Xie, X.F. & Hsiao, Y.H. 2008. Preparation and properties of carbon nanotube/polypropylene nanocomposite bipolar plates for polymer electrolyte membrane fuel cells. Journal of Power Sources 185(2): 1225-1232.

Lieneke, T., Denzer, V., Adam, G.A.O. & Zimmer, D. 2016. Dimensional tolerances for additive manufacturing: Experimental investigation for fused deposition modeling. Procedia CIRP 43: 286-291.

Lima, D.D., Campo, K.N., Button, S.T. & Caram, R. 2020. 3D thixo-printing: A novel approach for additive manufacturing of biodegradable Mg-Zn alloys. Materials and Design 196: 109161.

Logakis, E., Pandis, C., Kyritsis, A., Pissis, P., Miuík, M., Omastová, M. & Pionteck, J. 2010. Indirect methods for the determination of optimal processing conditions in conductive polypropylene/carbon nanotubes composites. Chemical Physics Letters 498(1-3): 125-128.

Lumpe, T.S., Mueller, J. & Shea, K. 2019. Tensile properties of multi-material interfaces in 3D printed parts. Materials and Design 162: 1-9.

Lupone, F., Padovano, E., Veca, A., Franceschetti, L. & Badini, C. 2020. Innovative processing route combining fused deposition modelling and laser writing for the manufacturing of multifunctional polyamide/carbon fiber composites. Materials and Design 193: 108869.

Matsuzaki, R., Ueda, M., Namiki, M., Jeong, T.K., Asahara, H., Horiguchi, K., Nakamura, T., Todoroki, A. & Hirano, Y. 2016. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Scientific Reports 6(1): 1-7.

McLouth, T.D., Severino, J.V., Adams, P.M., Patel, D.N. & Zaldivar, R.J. 2017. The impact of print orientation and raster pattern on fracture toughness in additively manufactured ABS. Additive Manufacturing 18: 103-109.

Mortazavian, S., Fatemi, A. & Khosrovaneh, A. 2015. Effect of water absorption on tensile and fatigue behaviors of two short glass fiber reinforced thermoplastics. SAE International Journal of Materials and Manufacturing 8(2): 435-443.

Mu, Q., Wang, L., Dunn, C.K., Kuang, X., Duan, F., Zhang, Z., Qi, H.J. & Wang, T. 2017. Digital light processing 3D printing of conductive complex structures. Additive Manufacturing 18: 74-83.

Nurul, M.S. & Mariatti, M. 2013. Effect of thermal conductive fillers on the properties of polypropylene composites. Journal of Thermoplastic Composite Materials 26(5): 627-639.

O’ Connor, H.J. & Dowling, D.P. 2020. Comparison between the properties of polyamide 12 and glass bead filled polyamide 12 using the multi jet fusion printing process. Additive Manufacturing 31: 100961.

Oksman, K., Mathew, A.P., Långström, R., Nyström, B. & Joseph, K. 2009. The influence of fibre microstructure on fibre breakage and mechanical properties of natural fibre reinforced polypropylene. Composites Science and Technology 69(11-12): 1847-1853.

Parlevliet, P.P., Bersee, H.E.N. & Beukers, A. 2006. residual stresses in thermoplastic composites-a study of the literature-part i: Formation of residual stresses. Composites Part A: Applied Science and Manufacturing 37(11): 1847-1857.

Patti, A., Barretta, R., Marotti de Sciarra, F., Mensitieri, G., Menna, C. & Russo, P. 2015. Flexural properties of multi-wall carbon nanotube/polypropylene composites: Experimental investigation and nonlocal modeling. Composite Structures 131: 282-289.

Penumakala, P.K., Santo, J. & Thomas, A. 2020. A critical review on the fused deposition modeling of thermoplastic polymer composites. Composites Part B: Engineering 201: 108336.

Radzuan, N.A.M., Gunasegran, M. & Naima, N. 2021. The effect of graphene addition on the Young ’ s modulus and tensile strength of kenaf fibre composites. In IOP Conference Series: Materials Science and Engineering. p. 012006.

Rajak, D.K., Pagar, D.D., Menezes, P.L. & Linul, E. 2019. Fiber-reinforced polymer composites: Manufacturing, properties, and applications. Polymers 11(10): 1667.

Rassmann, S., Reid, R.G. & Paskaramoorthy, R. 2010. Effects of processing conditions on the mechanical and water absorption properties of resin transfer moulded kenaf fibre reinforced polyester composite laminates. Composites Part A: Applied Science and Manufacturing 41(11): 1612-1619.

Razali, N., Aseri, N.A.S., Dalingam, S. & Kamarolzaman, A.A. 2019. The effect of fibre loading on the physical and mechanical properties of pineapple leaf fibre-reinforced biodegradable composites. Journal of Physics: Conference Series 1349(1): 8.

Ruan, K., Shi, X., Guo, Y. & Gu, J. 2020. Interfacial thermal resistance in thermally conductive polymer composites: A review. Composites Communications 22: 100518.

Sabri, M.A.M., Sulong, A.B., Chin, F.K. & Sahari, J. 2012. Effect of corrossion on the electrical conductivity of metals and polymer composite. Jurnal Teknologi 59(2): 81-85.

Saeed, K., McIlhagger, A., Harkin-Jones, E., Kelly, J. & Archer, E. 2020. Predication of the in-plane mechanical properties of continuous carbon fibre reinforced 3D printed polymer composites using classical laminated-plate theory. Composite Structures 259: 113226.

Saleh, E.  2019. 3D and 4D printed polymer composites for electronic applications. In 3D and 4D Printing of Polymer Nanocomposite Materials: Processes, Applications, and Challenges, edited by Sadasivuni, K.K., Deshmukh, K. & Al-Maadeed, M.A.S.A. Amsterdam: Elsevier Inc. pp. 505-525.

Sandler, J.K.W., Pegel, S., Cadek, M., Gojny, F., Van Es, M., Lohmar, J., Blau, W.J., Schulte, K., Windle, A.H. & Shaffer, M.S.P. 2004. A comparative study of melt spun polyamide-12 fibres reinforced with carbon nanotubes and nanofibres. Polymer 45(6): 2001-2015.

Sanei, S.H.R. & Popescu, D. 2020. 3D-printed carbon fiber reinforced polymer composites: A systematic review. Journal of Composites Science 4(3): 98.

Sang, L., Han, S., Li, Z., Yang, X. & Hou, W. 2019. Development of short basalt fiber reinforced polylactide composites and their feasible evaluation for 3D printing applications. Composites Part B: Engineering 164: 629-639.

Sezer, H.K. & Eren, O. 2019. FDM 3D printing of MWCNT re-inforced ABS nano-composite parts with enhanced mechanical and electrical properties. Journal of Manufacturing Processes 37: 339-347.

Sharma, M., Rao, I.M. & Bijwe, J. 2009. Influence of orientation of long fibers in carbon fiber-polyetherimide composites on mechanical and tribological properties. Wear 267(5-8): 839-845.

Sharma, S.K., Gupta, V., Tandon, R.P. & Sachdev, V.K. 2016. Synergic effect of graphene and MWCNT fillers on electromagnetic shielding properties of graphene-MWCNT/ABS nanocomposites. RSC Advances 6(22): 18257-18265.

Sreenivas, H.T., Krishnamurthy, N. & Arpitha, G.R. 2020. A comprehensive review on light weight kenaf fiber for automobiles. International Journal of Lightweight Materials and Manufacture 3(4): 328-337.

Sui, G., Zhong, W.H., Fuqua, M.A. & Ulven, C.A. 2007. Crystalline structure and properties of carbon nanofiber composites prepared by melt extrusion. Macromolecular Chemistry and Physics 208(17): 1928-1936.

Taherian, R., Hadianfard, M.J. & Golikand, A.N. 2013. Manufacture of a polymer-based carbon nanocomposite as bipolar plate of proton exchange membrane fuel cells. Materials & Design 49: 242-251.

Taketa, I., Kalinka, G., Gorbatikh, L., Lomov, S.V. & Verpoest, I. 2020. Influence of cooling rate on the properties of carbon fiber unidirectional composites with polypropylene, polyamide 6, and polyphenylene sulfide matrices. Advanced Composite Materials 29(1): 101-113.

Tambrallimath, V., Keshavamurthy, R.D.S., Koppad, P.G. & Kumar, G.S.P. 2019. Thermal behavior of PC-ABS based graphene filled polymer nanocomposite synthesized by FDM process. Composites Communications 15: 129-134.

Tan, Y.L., Huang, C.H., Guo, Z.X. & Yu, J.  2018. Morphology and mechanical properties of polyamide 6/polystyrene blends prepared by diffusion and subsequent polymerization of styrene in polyamide 6 pellets. Materials 11(5): 776.

Tao, Q., Pinter, G. & Krivec, T. 2017. Influence of cooling rate and annealing on the DSC Tg of an epoxy resin. Microelectronics Reliability 78: 396-400.

Turaka, S. & Vijaya Kumar Reddy, K. 2019. Effect of hybrid MWCNTs/graphene on mechanical properties of reinforced unidirectional E-glass/epoxy composite. Materials Today: Proceedings 18: 1540-1547.

Ueda, M., Kishimoto, S., Yamawaki, M., Matsuzaki, R., Todoroki, A., Hirano, Y. & Le Duigou, A. 2020. 3D compaction printing of a continuous carbon fiber reinforced thermoplastic. Composites Part A: Applied Science and Manufacturing 137: 105985.

Unterweger, C., Mayrhofer, T., Piana, F., Duchoslav, J., Stifter, D., Poitzsch, C. & Fürst, C. 2020. Impact of fiber length and fiber content on the mechanical properties and electrical conductivity of short carbon fiber reinforced polypropylene composites. Composites Science and Technology 188: 107998.

Verma, P., Saini, P. & Choudhary, V. 2015. Designing of carbon nanotube/polymer composites using melt recirculation approach: Effect of aspect ratio on mechanical, electrical and EMI shielding response. Materials and Design 88: 269-277.

Wang, X., Zhao, L., Fuh, J.Y.H. & Lee, H.P. 2019. Effect of porosity on mechanical properties of 3D printed polymers: Experiments and micromechanical modeling based on X-ray computed tomography analysis. Polymers 11(7): 1154.

Wasti, S. & Adhikari, S. 2020. Use of biomaterials for 3D printing by fused deposition modeling technique: A review. Frontiers in Chemistry 8: 315.

Weiss, K.P., Bagrets, N., Lange, C., Goldacker, W. & Wohlgemuth, J. 2015. Thermal and mechanical properties of selected 3D printed thermoplastics in the cryogenic temperature regime. In IOP Conference Series: Materials Science and Engineering. p. 012022.

Yao, T., Ye, J., Deng, Z., Zhang, K., Ma, Y. & Ouyang, H. 2020. Tensile failure strength and separation angle of FDM 3D printing PLA material: Experimental and theoretical analyses. Composites Part B: Engineering 188: 107894.

Ye, W., Lin, G., Wu, W., Geng, P., Hu, X., Gao, Z. & Zhao, J. 2019. Separated 3D printing of continuous carbon fiber reinforced thermoplastic polyimide. Composites Part A: Applied Science and Manufacturing 121: 457-464.

Zaghloul, M.M.Y., Zaghloul, M.Y.M. & Zaghloul, M.M.Y. 2017. Experimental and modeling analysis of mechanical-electrical behaviors of polypropylene composites filled with graphite and MWCNT fillers. Polymer Testing 63: 467-474.

Zare, Y. & Rhee, K.Y. 2020. Effects of carbon nanotubes and interphase properties on the interfacial conductivity and electrical conductivity of polymer nanocomposites. Polymer International 69(4): 413-422.

Zeng, L., Li, P., Yao, Y., Niu, B., Niu, S. & Xu, B. 2020. Recent progresses of 3D printing technologies for structural energy storage devices. Materials Today Nano 12: 1-13.

Zhang, M., Lu, S., Xu, E., He, M. & Yu, J. 2015. A new method for preparation of low melting point polyamide-6 (LPA6) and properties of compatibilized blends of LPA6/glass beads/styrene and maleic anhydride copolymer. Science and Engineering of Composite Materials 22(6): 599-606.

Zhou, Z., Wang, S., Zhang, Y. & Zhang, Y. 2006. Effect of different carbon fillers on the properties of PP composites: Comparison of carbon black with multiwalled carbon nanotubes. Journal of Applied Polymer Science 102(5): 4823-4830.

 

*Pengarang untuk surat-menyurat; email: afiqah@ukm.edu.my

 

     

sebelumnya