Sains Malaysiana 51(7)(2022): 2097-2107

http://doi.org/10.17576/jsm-2022-5107-13

 

DFT and CBS Study of Ethyl Acetate Conformers in the Neutral Hydrolysis

(Kajian DFT dan CBS terhadap Konformer Etil Asetat dalam Hidrolisis Neutral)

 

VERA KHOIRUNISA1,2, FEBDIAN RUSYDI3,4*, ROICHATUL MADINAH4,5, HERMAWAN KRESNO DIPOJONO1, FAOZAN AHMAD6, MUDASIR7, IRA PUSPITASARI4,8 & AZIZAN AHMAD5

 

1Department of Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia

2Engineering Physics Study Program Institut Teknologi Sumatera, Jl. Terusan Ryacudu Lampung Selatan 35365, Indonesia

3Department of Physics, Faculty of Science and Technology, Universitas Airlangga, Jl. Mulyorejo, Surabaya 60115, Indonesia

4Research Center for Quantum Engineering Design, Faculty of Science and Technology Universitas Airlangga, Jl. Mulyorejo, Surabaya 60115, Indonesia

5Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

6Department of Physics, Faculty of Mathematics and Science, Institut Pertanian Bogor, Bogor 16680, Indonesia

7Department of Chemistry, Faculty of Mathematics and Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia

8Information System Study Program, Faculty of Science and Technology, Universitas Airlangga, Jl. Mulyorejo, Surabaya 60115, Indonesia

 

Diserahkan: 28 Ogos 2021/ Diterima: 12 Januari 2022

 

Abstract

First-principles calculations are commonly used to search for possible transition states in reaction kinetics studies, which are such a challenge to observe experimentally. However, computationally studying the reaction is also challenging because of, inter alia, the Basis Set Incompleteness Error (BSIE). Accordingly, we utilized density functional theory-based calculations and the complete basis set method, to confirm the conformational effect in the neutral hydrolysis of three ethyl acetate analogs: ethyl formate, ethyl acetate, and ethyl fluoroacetate. The results showed that both methods yielded activation energy span, which implies that the conformational effect in the ethyl acetate neutral hydrolysis is not due to the BSIE. The results also demonstrated the importance of polarization and diffuse function in a basis set. The former was to improve the ground state geometry, and the latter was to increase the activation energy.

 

Keywords: Complete basis set; conformational effect; density functional theory; energy; neutral hydrolysis

 

Abstrak

Pengiraan prinsip pertama biasanya digunakan untuk mencari kemungkinan keadaan peralihan dalam kajian kinetik tindak balas, yang merupakan satu cabaran untuk diperhatikan secara uji kaji. Walau bagaimanapun, mengkaji reaksi secara komputasi juga mencabar kerana antara lain Set Asas Ketaklengkapan Ralat (BSIE). Oleh kerana itu, kami melakukan pengiraan berdasarkan teori fungsi ketumpatan dan set asas lengkap, untuk mengesahkan kesan konformasi pada hidrolisis netral tiga analog etil asetat: etil format, etil asetat dan etil fluoroasetat. Hasil kajian menunjukkan bahawa kedua-dua kaedah menghasilkan rentang tenaga pengaktifan, yang menunjukkan bahawa kesan konformasi dalam hidrolisis netral etil asetat bukan disebabkan oleh BSIE. Hasilnya juga menunjukkan pentingnya fungsi polarisasi dan difusi dalam set asas dengan teori fungsi ketumpatan untuk mendapatkan geometri keadaan asas yang lebih tepat dan set asas lengkap untuk meningkatkan tenaga pengaktifan.

 

Kata kunci: Hidrolisis neutral; kesan konformasi; set asas lengkap; tenaga; teori fungsi ketumpatan

 

RUJUKAN

Angel, V., Luis, C.V.P., Olalla, N.F. & Carlos, S.L. 2019. On the use of popular basis sets: Impact of the intramolecular basis set superposition error. Molecules 24: 3810.

Arlo, M. & Herschel, H. 1959. Solvent and chain length effects in the non-catalyzed hydrolysis of some alkyl and aryl trifluoroacetates. Journal of the American Chemical Society 81: 2082-2086.

Cameron, D.S. & Amir, K. 2019. Kinetics and thermodynamics of reactions involving criegee intermediates: An assessment of density functional theory and ab initio methods through comparison with CCSDT(Q)/CBS data. Journal of Computational Chemistry 41: 328-339.

Erkki, K.E. & Nils, J.C. 1963. Kinetics of the neutral hydrolysis of chloromethyl chloroacetate. Acta Chemica Scandinavica 17: 1584-1594.

Ernest, L.E. 1953. The origin of steric hindrance in cyclohexane derivatives. Experientia 9: 91-93.

Febdian, R., Roichatul, M., Ira, P., Wun, F.M., Azizan, A. & Andrivo, R. 2021. Teaching reaction kinetics through isomerization cases with the basis of density-functional calculation. Biochemistry and Molecular Biology Education 49: 216-227.

Febdian, R., Nufida, D.A., Rizka, N.F., Hermawan, K.D., Faozan, A., Mudasir, Ira, P. & Andrivo, R. 2019. The transition state conformational effect on the activation energy of ethyl acetate neutral hydrolysis. Heliyon 5: e02409.

Fei, Z., Yang, W., Mingyuan, Z. & Lihua, K. 2015. C-doped boron nitride fullerene as a novel catalyst for acetylene hydrochlorination: A DFT study. RSC Advances 5: 56348-56355.

Francis, A.C. & Richard, J.S. 2007. Advanced Organic Chemistry. Part A: Structure and Mechanisms. New York: Springer.

Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J. & Fox, D.J. 2010. Gaussian 09, Revision B.01. Wallingford: Gaussian Inc.

Hossein, T., Mohammad, A.R. & Amir, M. 2019. DFT study on the mechanistic details of the hydrolysis of dicyan using acetaldehyde as the first organocatalyst. Computational and Theoretical Chemistry 1154: 37-43.

Hui, Z., Yan, S., Hong, Z., Xuan, W., Han, B. & Zesheng, L. 2019. Further discussion on the reaction behaviour of triallyl isocyanurate in the UV radiation cross-linking process of polyethylene: A theoretical study. Royal Society Open Science 6: 182196.

Hussein, A.A., Al-Hadedi, A.A.M., Mahrath, A.J., Moustafa, G.A.I., Almalki, F.A., Alqahtani, A., Shityakov, S. & Algazally, M.E. 2020. Mechanistic investigations on pinnick oxidation: A density functional theory study. Royal Society Open Science 7: 191568.

Jae, S.L. & Young, C.P. 2014. Stability and interconversion of acetylcholine conformers. Bulletin of the Korean Chemical Society 35(10): 2911-2916.

Johannes, K., Peter, B. & Ulrich, S. 2016. Assessment of different basis sets and DFT functionals for the calculation of structural parameters, vibrational modes and ligand binding energies of Zr4O2(carboxylate)12 clusters. Computational and Theoretical Chemistry 22: 127-135.

Johannes, Z., Helmut, H., Joseph, D.S. & Miroslaw, C. 1997. Selectivity of lipases: Con- formational analysis of suggested intermediates in ester hydrolysis of chiral primary and secondary alcohols. Journal of Molecular Catalysis B: Enzymatic 3: 83-98.

John, R. & William, J.G. 1934. Researches in the menthone series. Part XIII. The relative molecular configurations of the menthols and menthylamines. Journal of the Chemical Society 1934: 1779-1783.

Joseph, W.O., Petersson, G.A. & Montgomery, J.A. 1996. A complete basis set model chemistry. V. Extensions to six or more heavy atoms. Journal of Chemical Physics 104: 2598.

Juan, R.A. & Annia, G. 2010. Counterpoise corrected interaction energies are not systematically better than uncorrected ones: Comparison with CCSD(T) CBS extrapolated values. Theoretical Chemistry Accounts 126: 75-85.

Kuchitsu, K. 1998. Structure of Free Polyatomic Molecules: (Basic) Data. 1st ed. Berlin: Springer-Verlag Berlin Heidelberg.

Nadezhda, R.K., Vladimir, F.M., Dmitry, B.K., Ekaterina, V.M. & Oleg, I.G. 2016. Synthesis, crystal structure and hydrolysis of novel isomeric cage (p{c/p{o)-phosphoranes on the basis of 4,4,5,5-tetramethyl-2-(2-oxo-1,2-diphenylethoxy)-1,3,2-dioxaphospholane and hexafluoroacetone. RSC Advances 6: 85745-85755.

Nina, N.C., Nataliya, F.L., Larisa, P.O., Igor, M.L. & Bagrat, A.S. 2015. The hydrolysis of (o{si)-chelate [n-(acetamido)methyl] dimethylchlorosilanes. DFT and MP2 study, QTAIM and NBO analysis. Computational and Theoretical Chemistry 1070: 162-173.

Petersson, G.A., Andrew, B., Thomas, G.T., Mohammad, A.A. & William, A.S. 1988. A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements. The Journal of Chemical Physics 89: 2193-2218.

Deslongchamps, P. 1975. The importance of conformation of the tetrahedral intermediate in the hydrolysis of esters and amides. In Organic Syntheses, edited by Bruylants, A., Ghosez, L. & Viehe, H.G. Oxford: Butterworth-Heinemann. pp. 351-378.

Pierre, H. & Walter, K. 1964. Inhomogeneous electron. Physical Review 136: B864-B871.

Radhakrishnamurti, P.S. & Prakash, C.P. 1970. Conformational studies in ester hydrolysis. Proceedings of the Indian Academy of Sciences Section A 71: 181-188.

Rincón, D.A., D.S. Cordeiro, M.N. & Mosquera, R.A. 2016. On the effects of the basis set superposition error on the change of QTAIM charges in adduct formation. Application to complexes between morphine and cocaine and their main metabolites. RSC Advances 6: 110642-110655.

Rizka, N.F., Febdian, R., Nufida, D.A., Vera, K., Hermawan, K.D., Faozan, A., Mudasir, & Ira, P. 2020. A density functional study of the preference of acetylcholine in the neutral hydrolysis. Molecules 25: 670.

Roman, M.B. 2010. Communications: Intramolecular basis set superposition error as a measure of basis set incompleteness: Can one reach the basis set limit without extrapolation? The Journal of Physical Chemistry 132: 211103.

Santanu, M., Shree, S.V.S.  & Raghavan, B.S. 2018. A quantification scheme for non-covalent interactions in the enantio-controlling transition states in asymmetric catalysis. Organic & Biomolecular Chemistry 16: 5643-5652.

Simone, G., Giovanna, L., Sergio, A., Stefan, E.B. & David, A.L. 2019. Bilirubin and its congeners: Conformational analysis and chirality from metadynamics and related computational methods. Monatshefte für Chemie - Chemical Monthly 150: 801-812.

Takeshi, Y., David, P.T. & Nicholas, C.H. 2004. A new hybrid exchange–correlation functional using the coulomb-attenuating method (cam- b3lyp). Chemical Physics Letter 393: 51-57.

Toby, T., Qingfeng, P., Luke, S., Ian, C., Wenhui, Z., Xiaocong, W., Robert, J.W. & Anthony, S.S. 2017. O-acetyl side-chains in monosaccharides: Redundant nmr spin- couplings and statistical models for acetate ester conformational analysis. Journal of Physical Chemistry B 121: 66-77.

Venkatasubban, K.S., Kenneth, R.D. & John, L.H. 1978. Transition-state structure for the neutral water-catalyzed hydrolysis of ethyl trifluorothiolacetate. Journal of the American Chemical Society 78: 6125-6128.

Venkatesan, V., Polke, B.G. & Sikder, A.K. 2012. Ab initio study on the intermolecular interactions between 1,1-diamino-2,2-dinitroethylene and acetylene: Pull effect on complex formation. Computational and Theoretical Chemistry 995: 49-54.

Vladimir, K. & Nediljko, B. 2018. Hydrolys