Sains Malaysiana 51(9)(2022): 2829-2842

http://doi.org/10.17576/jsm-2022-5109-08

 

Edible Bird’s Nest, a Valuable Glycoprotein Source: Current Research Prospects and Challenges in Malaysia

(Sarang Burung Walit, Punca Glikoprotein Bernilai Tinggi: Prospek Penyelidikan dan Cabaran Semasa di Malaysia)

 

KEVSER IRFAN UNAL1, LEE SIN CHANG1,3, WAN AIDA WAN MUSTAPHA1,2, NOORUL SYUHADA MOHD RAZALI1,2, ABDUL SALAM BABJI1,2 & SENG JOE LIM1,2*

 

1Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

2Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

3Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University Kuala Lumpur, 56000 Cheras, Kuala Lumpur, Malaysia

 

Diserahkan: 6 Januari 2022/Diterima: 14 April 2022

 

Abstract

Edible bird's nest (EBN) is a salivary secretion of swiftlets which consist of protein and carbohydrate rich glycoproteins. This natural ingredient is very valuable, nutritional and medically valuable. The EBN industry have grown rapidly and benefited the Malaysian economy, hence, it is viewed seriously and it is actively supported by the government. This review discusses the progress and development of EBN industry as well as the R&D activities and endeavours especially that which involves deriving peptides with biological activities from EBN and its by-product sources. Many studies have documented the therapeutic properties of EBN such as antiaging, antiviral, antioxidant, and antihypertensive. Studies have also been conducted to produce glycoprotein hydrolysates from EBN through enzymatic hydrolysis, and findings showed that these bioactive peptides increase solubility as well as antioxidant and antihypertensive activities. Enzymatic hydrolysis breaks long protein chains at specific sites and releases amino acids and small peptides with lower molecular weights. The EBN hydrolysates produced can improve bioactivity and overcome insolubility and low absorption of EBN prepared and consumed through traditional means. Further studies need to be carried out to optimise EBN glycoprotein hydrolysates production as well as maximising their bioavailability and efficacy in the human gastrointestinal system. In addition, EBN by-products produced during EBN cleaning process should be fully utilised to recover the high-value glycoproteins, while reducing pollution and wastage. By enhancing R&D activities of EBN, bioactive glycopeptides produced from EBN may become an important functional food ingredient for various uses and innovative value-added products in the future.

 

Keywords: Bioactive peptides; edible bird’s nest; glycoprotein; hydrolysis; value-added product

 

Abstrak

Sarang burung walit (SBW) adalah rembesan air liur burung walit yang terdiri daripada glikoprotein yang kaya dengan protein dan karbohidrat. Bahan semula jadi ini sangat berharga, berkhasiat dan mempunyai nilai perubatan. Perusahaan industri SBW telah berkembang pesat dan menguntungkan ekonomi Malaysia, justeru, ia dipandang serius dan disokong secara aktif oleh kerajaan. Ulasan ini membincangkan tentang pengembangan dan pembangunan industri SBW serta aktiviti dan usaha R&D terutamanya yang melibatkan penghasilan peptida dengan aktiviti biologi daripada SBW dan produk sampingannya. Pelbagai kajian telah mendokumentasikan sifat terapeutik SBW seperti antipenuaan, antivirus, antioksida dan antihipertensi. Banyak kajian juga telah dijalankan untuk menghasilkan hidrolisat glikoprotein daripada SBW melalui hidrolisis enzim dan hasil kajian mendapati bahawa peptida bioaktif ini meningkatkan kadar keterlarutan serta aktiviti antioksida dan antihipertensi. Hidrolisis enzim memecahkan rantai protein yang panjang di tapak yang khusus dan membebaskan asid amino dan peptida kecil dengan berat molekul yang lebih rendah. Hidrolisat SBW yang terhasil dapat meningkatkan bioaktiviti dan mengatasi masalah ketidaklarutan dan penyerapan SBW yang rendah dalam kaedah penyediaan dan pengambilan SBW secara tradisi. Kajian selanjutnya harus dijalankan untuk mengoptimumkan proses penghasilan hidrolisat glikoprotein SBW serta memaksimumkan bioketersediaan dan keberkesanannya pada sistem gastrousus manusia. Selain itu, produk sampingan EBN yang terhasil sewaktu proses pembersihan harus dimanfaatkan sepenuhnya untuk memperoleh semula glikoprotein bernilai tinggi, sekaligus mengurangkan pencemaran dan pembaziran. Dalam usaha mempergiat aktiviti R&D SBW, glikopeptida bioaktif yang dihasilkan daripada SBW boleh menjadi bahan makanan berfungsi yang penting untuk pelbagai kegunaan dan produk nilai tambah yang inovatif pada masa hadapan.

 

Kata kunci: Glikoprotein; hidrolisis; peptida bioaktif; produk nilai tambah; sarang burung walit

 

RUJUKAN

Akmal, M.N., Intan-Shameha, A.R., Mansor, R., Ideris, A. & Rahman, A. 2020. High-dose edible bird’s nest extract (EBN) upregulates ldl-r via suppression of HMGCR gene expression in HepG2 cell lines. Sains Malaysiana 49(10): 2433-2442.

Ali, A.A.M., Hidayati Syamimi, M.N., Chong, P.K., Abdul Salam, B. & Lim, S.J. 2019. Comparison of amino acids profile and antioxidant activities between edible bird nest and chicken egg. Malaysian Applied Biology 48(2): 63-66.

Amin, A.M., Din, K. & Kee Chow, H. 2019. Optimization of enzymatic hydrolysis condition of edible bird’s nest using protamex to obtain maximum degree of hydrolysis. Asian Journal of Agriculture and Biology 7(1): 1-9.

Aminoff, D. 1961. Methods for the quantitative estimation of N-acetylneuraminic acid and their application to hydrolysates of sialomucoids. Biochemical Journal 81(2): 384-392.

Azmi, N.A., Lee, T.H., Lee, C.H., Hamdan, N. & Cheng, K.K. 2021. Differentiation unclean and cleaned edible bird’s nest using multivariate analysis of amino acid composition data. Pertanika Journal of Science and Technology 29(1): 2174-2020.

Babji, A., Ibrahim, E.S.K., Daud, N., Nadia, N., Akbar, H., Ghassem, M., Najafian, L. & Salma, M. 2018. Assessment on bioactive components of hydrolysed edible bird nest. International Food Research Journal 25(5): 1936-1941.

Badrulzaman, S.Z.S., Aminan, A.W., Ramli, A.N.M., Che Man, R. & Wan Azelee, N.I. 2021. Extraction and characterization of keratin from chicken and swiftlet feather. Materials Science Forum 1(1): 157-162.

Barchi Jr., J.J. 2013. Mucin‐type glycopeptide structure in solution: Past, present, and future. Biopolymers 99(10): 713-723.

Bhari, R., Kaur, M. & Singh, R.S. 2021. Chicken feather waste hydrolysate as a superior biofertilizer in agroindustry. Current Microbiology 78(6): 1-19.

Ben Hamad Bouhamed, S., Krichen, F. & Kechaou, N. 2020. Feather protein hydrolysates: A study of physicochemical, functional properties and antioxidant activity. Waste and Biomass Valorization 11(1): 51-62.

Callegaro, K., Brandelli, A. & Daroit, D.J. 2019. Beyond plucking: Feathers bioprocessing into valuable protein hydrolysates. Waste Management 95: 399-415.

Callegaro, K., Welter, N. & Daroit, D.J. 2018. Feathers as bioresource: Microbial conversion into bioactive protein hydrolysates. Process Biochemistry 75(1): 1-9.

Careena, S., Sani, D., Tan, S.N., Lim, C.W., Hassan, S., Norhafizah, M., Kirby, B.P., Ideris, A., Stanslas, J., Hamidon, B.B. & Lim, C.T.S. 2018. Effect of edible bird’s nest extract on lipopolysaccharide-induced impairment of learning and memory in Wistar rats. Evidence-Based Complementary and Alternative Medicine 2018(1): 9318789.

Chan, G.K.L., Wong, Z.C.F., Lam, K.Y.C., Cheng, L.K.W., Zhang, L.M., Lin, H., Dong, T.T. & Tsim, K.W.K. 2015. Edible bird’s nest, an Asian health food supplement, possesses skin lightening activities: Identification of n-acetylneuraminic acid as active ingredient. Journal of Cosmetics, Dermatological Sciences and Applications 5(4): 262-274.

Chaturvedi, V., Agrawal, K. & Verma, P. 2021. Chicken feathers: A treasure cove of useful metabolites and value-added products. Environmental Sustainability 4(1): 231-243.

Cheong, C.W., Lee, Y.S., Ahmad, S.A., Ooi, P.T. & Phang, L.Y. 2018. Chicken feather valorization by thermal alkaline pretreatment followed by enzymatic hydrolysis for protein-rich hydrolysate production. Waste Management 79: 658-666.

Cheong, C.W., Ahmad, S.A., Ooi, P.T. & Phang, L.Y. 2017. Treatments of chicken feather waste. Pertanika Journal of Scholarly Research Reviews 3(1): 32-41.

Chua, K.H., Lee, T.H., Nagandran, K., Md Yahaya, N.H., Lee, C.T., Tjih, E.T.T. & Abdul Aziz, R. 2013. Edible bird’s nest extract as a chondro-protective agent for human chondrocytes isolated from osteoarthritic knee: In vitro study. BMC Complementary and Alternative Medicine 13: 19.

Colombo, J., Garcia‐Rodenas, C., Guesry, P.R. & Rey, J. 2003. Potential effects of supplementation with amino acids, choline or sialic acid on cognitive development in young infants. Acta Paediatrica 92(442): 42-46.

Comb, D.G. & Roseman, S. 1960. The sialic acids I. The structure and enzymatic synthesis of N-acetylneuraminic acid. Journal of Biological Chemistry 235(9): 2529-2537.

Comb, D.G. & Roseman, S. 1958. Composition and enzymatic synthesis of N-acetylneuraminic acid (sialic acid). Journal of the American Chemical Society 80(2): 497-499.

Dai, Y., Cao, J., Wang, Y., Chen, Y. & Jiang, L. 2021. A comprehensive review of edible bird’s nest. Food Research International 140(1): 109875.

Daud, N.A., Mohamad Yusop, S., Babji, A.S., Lim, S.J., Sarbini, S.R. & Hui Yan, T. 2021a. Edible bird’s nest: Physicochemical properties, production, and application of bioactive extracts and glycopeptides. Food Reviews International 37(2): 177-196.

Daud, N.A., Yusop, S.M., Lim, S.J. & Babji, A.S. 2021b. Evaluation of glycan compound from swiftlet’s edible nest (Aerodramus fuciphagus) as potential prebiotic material. Current Advances in Chemistry and Biochemistry 4(1): 7-15.

Daliri, E.B., Oh, D.H. & Lee, B.H. 2017. Bioactive peptides. Foods (Basel, Switzerland) 6(5): 32.

Department of Standards Malaysia. 2010. MS 2333:2010 Good manufacturing practice (GMP) for processing raw-unclean and raw-clean edible-bird nest (EBN).

Department of Veterinary Services Malaysia. 2021. Lawatan Kerja YB Menteri Pertanian dan Industri Makanan ke Loji Pemprosesan Sarang Burung Walet: 2. Kuala Lumpur, Malaysia.

Etty Syarmila, I.K. 2019. Sarang Burung Walet Suatu Dimensi Baru. Bangi: Penerbit Universiti Kebangsaan Malaysia.

Etty Syarmila, I.K., Ayub, M.K. & Babji, A.S. 2014. Effect of enzymatic hydrolysis of pancreatin and alcalase enzyme on some properties of edible bird’s nest hydrolysate. AIP Conference Proceedings 1614(1): 427-432.

Gan, J.Y., Chang, L.S., Mat Nasir, N.A., Babji, A.S. & Lim, S.J. 2020. Evaluation of physicochemical properties, amino acid profile and bioactivities of edible Bird’s nest hydrolysate as affected by drying methods. LWT Food Science & Technology 131(1): 109777.

Gausset, Q. 2002. A short history of birds’ nests management in the Niah Caves (Sarawak). Borneo Research Bulletin 33(1): 127-140.

Ghassem, M., Arihara, K., Mohammadi, S., Sani, N.A. & Babji, A.S. 2017. Identification of two novel antioxidant peptides from edible bird’s nest (Aerodramus fuciphagus) protein hydrolysates. Food and Function 8(5): 2046-2052.

Guo, C.T., Takahashi, T., Bukawa, W., Takahashi, N., Yagi, H., Kato, K., Kazuya, I.P., Miyamoto, D., Suzuki, T. & Suzuki, Y. 2006. Edible bird’s nest extract inhibits influenza virus infection. Antiviral Research 70(3): 140-146.

Guo, L., Wu, Y., Liu, M., Wang, B., Ge, Y. & Chen, Y. 2017. Determination of edible bird’s nests by FTIR and SDS-PAGE coupled with multivariate analysis. Food Control 80(1): 259-266.

Halimi, N.M., Kasim, Z.M. & Babji, A.S. 2014. Nutritional composition and solubility of edible bird nest (Aerodramus fuchiphagus). AIP Conference Proceedings 1614: 476-481.

Hamzah, Z., Jeyaraman, S., Hashim, O. & Hussin, K. 2016. Application of Fourier transform infrared spectroscopy on edible bird nest authenticity. Contemporary Issues and Development in the Global Halal Industry 1(1): 557-566.

Hobbs, J.J. 2004. Problems in the harvest of edible birds’ nests in Sarawak and Sabah, Malaysian Borneo. Biodiversity and Conservation 13(12): 2209-2226.

Hou, Z., Imam, M.U., Ismail, M., Azmi, N.H., Ismail, N., Ideris, A. & Mahmud, R. 2015. Lactoferrin and ovotransferrin contribute toward antioxidative effects of Edible Bird’s Nest against hydrogen peroxide-induced oxidative stress in human SH-SY5Y cells. Bioscience, Biotechnology, and Biochemistry 79(10): 1570-1578.

Hou, Z.P., Tang, S.Y., Ji, H.R., He, P.Y., Li, Y.H., Dong, X.L., Du, M.N., Maznah, I. & He, W.J. 2021. Edible bird’s nest attenuates menopause-related bone degeneration in rats via increaing bone estrogen-receptor expression. Chinese Journal of Integrative Medicine 27(4): 280-285.

Houdret, N., Lhermitte, M., Degand, P. & Roussel, P. 1975. Purification and chemical study of a Collocalia glycoprotein. Biochimie 57(5): 603-608.

Howe, C., Lee, L.T. & Rose, H.M. 1961. Collocalia mucoid: A substrate for myxovirus neuraminidase. Archives of Biochemistry and Biophysics 95(3): 512-520.

Howe, C., Lee, L.T. & Rose, H.M. 1960. Influenza virus sialidase. Nature 188(4746): 251-252.

Huang, X., Li, Z., Zou, X., Shi, J., Elrasheid Tahir, H., Xu, Y., Zhai, X. & Hu, X. 2019. A low- cost smart system to analyze different types of edible bird’s nest adulteration based on colorimetric sensor array. Journal of Food and Drug Analysis 27(4): 876-886.

Huda, M.Z., Abu Bakar, M.Z., Goh, Y., Shuhaimi, H., Awang Junaidi, A.H. & Zairi, M.S. 2008. Proximate, elemental and free fatty acids of pre-processed edible bird’s nest (Aerodramus fuciphagus): A comparison between regions and type of nest. Journal of Food Technology 6(1): 39-44.

Hun, L.T., Wani, W.A., Tjih, E.T.T., Adnan, N.A., Le Ling, Y. & Aziz, R.A. 2015. Investigations into the physicochemical, biochemical and antibacterial properties of edible bird’s nest. Journal of Chemical and Pharmaceutical Research 7(7): 228-247.

Hwang, E., Park, S.W. & Yang, J.E. 2020. Anti-aging, anti-inflammatory, and wound-healing activities of edible bird’s nest in human skin keratinocytes and fibroblasts. Pharmacognosy Magazine 16(69): 336-342.

Ismail, M.Y. 1999. Social control and bird’s nest harvesting among the Idahan: A preliminary observation. Japanese Journal of Southeast Asian Studies 37(1): 3-17.

Jang, A. & Lee, M. 2005. Purification and identification of angiotensin converting enzyme inhibitory peptides from beef hydrolysates. Meat Science 69(4): 653-661.

Jin, J., Okagu, O.D., Yagoub, A.E.A. & Udenigwe, C.C. 2021. Effects of sonication on the in vitro digestibility and structural properties of buckwheat protein isolates. Ultrasonics Sonochemistry 70(1): 105348.

Kathan, R.H. & Weeks, D.I. 1969. Structure studies of Collocalia mucoid: I. Carbohydrate and amino acid composition. Archives of Biochemistry and Biophysics 134(2): 572-576.

Khalid, S.K.A., Abd Rashed, A., Aziz, S.A. & Ahmad, H. 2019. Effects of sialic acid from edible bird nest on cell viability associated with brain cognitive performance in mice. World Journal of Traditional Chinese Medicine 5(4): 214-232.

Kong, H., Wong, K.H. & Lo, S.C. 2016. Identification of peptides released from hot water insoluble fraction of edible bird’s nest under simulated gastro-intestinal conditions. Food Research International 85(1): 19-25.

Lee, S.H., Qian, Z.J. & Kim, S.K. 2010. A novel angiotensin I converting enzyme inhibitory peptide from tuna frame protein hydrolysate and its antihypertensive effect in spontaneously hypertensive rats. Food Chemistry 118(1): 96-102.