Sains Malaysiana 51(9)(2022): 2967-2984

http://doi.org/10.17576/jsm-2022-5109-18

 

Circulating Neonatal Nav1.5 (nNav1.5) Antigen and Anti-nNav1.5 Antibodies as Potential Biomarkers for Breast Cancer Metastasis

(Peredaran Antigen dan Antibodi Neonatal Nav1.5 (nNav1.5) Sebagai Penanda Biologi Berpotensi untuk Metastasis Kanser Payu Dara)

 

HARISHINI RAJARATINAM1, NUR SYAHMINA RASUDIN1, MAYA MAZUWIN YAHYA2,3, WAN ZAINIRA WAN ZAIN2, SABREENA SAFUAN1, NURUL ASMA-ABDULLAH1, NOOR FATMAWATI MOKHTAR4 & WAN EZUMI MOHD FUAD1*

 

1School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Darul Naim, Malaysia

2Department of Surgery, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Darul Naim, Malaysia

3Breast Cancer Awareness and Research (BestARi) Unit, Hospital Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Darul Naim, Malaysia

4Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Darul Naim, Malaysia

 

Diserahkan: 4 Januari 2022/Diterima: 14 Mac 2022

 

Abstract

Neonatal Nav1.5 (nNav1.5) has been known to potentiate breast cancer (BCa) metastasis. The detection of anti-nNav1.5 antibodies (anti-nNav1.5-Ab) reflects the immunogenicity of nNav1.5. However, the presences of circulating nNav1.5 antigen and anti-nNav1.5-Ab in the context of BCa metastasis have not been explored yet. Therefore, the study has attempted to conduct such an investigation using both blood samples from 4T1 orthotopic mice and BCa patients. In the preclinical study, forty female BALB/c mice were divided into three groups: 4T1 orthotopic BCa mice (n=17), control mice (n=20) and positive control mice (n=3). After tumour development, the mice were sacrificed to obtain target organs, whole blood, and serum. Histopathology, cytokine analyses, real-time PCR, and indirect ELISA were performed. Histopathology and cytokine analyses showed the establishment of metastasis in 4T1 orthotopic mice. The concentration of vascular endothelial growth factor (VEGF) was significantly higher in the 4T1 orthotopic mice (P<0.0001****). Circulating nNav1.5 antigen and anti-nNav1.5-Ab were detected in 4T1 orthotopic mice, using real-time PCR and indirect ELISA, respectively. Furthermore, there was an inverse relationship between anti-nNav1.5-Ab and the total metastatic foci (P=0.0485*, r=-0.7306). In the clinical study, 32 BCa patients were grouped based on their stages: early-invasive (n=15) and advanced (n=17) stages. Approximately 3 mL of blood was withdrawn, and only indirect ELISA was conducted. The clinical study showed that BCa patients of advanced-stages portrayed higher expression of anti-nNav1.5-Ab compared to early stages of BCa (P =0.0110*). In conclusion, the detection of nNav1.5 antigen and anti-nNav1.5-Ab was consistent with the presence of BCa metastasis.

 

Keywords: Breast cancer patients; in vivo; metastasis; Neonatal Nav1.5; orthotopic; 4T1

 

Abstrak

Neonatal Nav1.5 (nNav1.5) telah dikenal pasti mampu mendorong metastasis kanser payu dara. Pengesanan antibodi anti-nNav1.5 (anti-nNav1.5-Ab) mencerminkan nNav1.5 bersifat immunogen. Walau bagaimanapun, peredaran antigen neonatal Nav1.5 dan anti-nNav1.5-Ab di dalam konteks kanser payu dara (KP) yang bermetastasis masih belum dikaji. Oleh itu, penyelidikan ini telah dijalankan untuk mengkaji perkara tersebut dengan menggunakan sampel darah daripada tikus ortotopik 4T1 dan pesakit KP. Dalam kajian praklinikal, empat puluh ekor tikus BALB/c betina dibahagikan kepada tiga kumpulan: tikus KP ortotopik 4T1 (n=17), tikus kawalan (n=20) dan tikus kawalan positif (n=3). Selepas perkembangan tumor, tikus dikorbankan untuk mendapatkan organ sasaran, darah dan serum. Histopatologi, analisis sitokin, PCR masa-nyata dan ELISA tidak langsung telah dijalankan. Histopatologi dan analisis sitokin menunjukkan berlakunya pembentukan metastasis pada tikus ortotopik 4T1. Kepekatan faktor pertumbuhan endothelium vaskular (VEGF) adalah lebih tinggi secara signifikan pada tikus ortotopik 4T1 (P<0.0001****). Peredaranantigen nNav1.5 dan anti-nNav1.5-Ab telah dikesan pada tikus ortotopik 4T1, masing-masing menggunakan PCR masa-nyata dan ELISA tak langsung. Tambahan pula, terdapat hubung kait songsang antara anti-nNav1.5-Ab dan jumlah fokus metastatik (P=0.0485*, r=-0.7306). Melalui kajian klinikal pula, 32 pesakit KP telah dikumpulkan berdasarkan peringkat kanser: peringkat awal invasif (n=15) dan lanjutan (n=17). Sebanyak, 3 mL darah telah diambil dan hanya ELISA tak langsung telah dijalankan. Kajian klinikal ini membuktikan bahawa pesakit KP peringkat lanjutan menunjukkan ekspresi anti-nNav1.5-Ab yang lebih tinggi berbanding pesakit KP peringkat awal (P=0.0110*). Kesimpulannya, pengesanan antigen nNav1.5 dan anti-nNav1.5-Ab adalah konsisten dengan kehadiran metastasis KP.

 

Kata kunci: in vivo; metastasis; neonatal Nav1.5; ortotopik; pesakitkanser payu dara; 4T1

 

RUJUKAN

Adams, J., Carder, P.J., Downey, S., Forbes, M.A., MacLennan, K., Allgar, V., Kaufman, S., Hallam, S., Bicknell, R., Walker, J.J., Cairnduff, F., Selby, P.J., Perren, T.J., Lansdown, M. & Banks, R.E. 2000. Vascular endothelial growth factor (VEGF) in breast cancer: Comparison of plasma, serum, and tissue VEGF and microvessel density and effects of tamoxifen. Cancer Research 60(11): 2898-2905.

Andrikopoulos, P., Fraser, S.P., Patterson, L., Ahmad, Z., Burcu, H., Ottaviani, D., Diss, J.K., Box, C., Eccles, S.A. & Djamgoz, M.B. 2011. Angiogenic functions of voltage-gated Na+ Channels in human endothelial cells: Modulation of vascular endothelial growth factor (VEGF) signaling. Journal of Biological Chemistry 286: 16846-16860.

Brackenbury, W.J., Chioni, A.M., Diss, J.K.J. & Djamgoz, M.B.A. 2007. The neonatal splice variant of Nav1.5 potentiates in vitro invasive behavior of MDA-MB-231 human breast cancer cells. Breast Cancer Research and Treatment 101: 149-160.

Brackenbury, W.J. 2012. Voltage-gated sodium channels and metastatic disease. Channels (Austin) 6: 352-361.

Catterall, W.A. 2000. From ionic currents to molecular mechanisms: The structure and function of voltage-gated sodium channels. Neuron 26: 13-25.

Chang, Q., Bournazou, E., Sansone, P., Berishaj, M., Gao, S.P., Daly, L., Wels, J., Theilen, T., Granitto, S., Zhang, X., Cotari, J., Alpaugh, M.L., de Stanchina, E., Manova, K., Li, M., Bonafe, M., Ceccarelli, C., Taffurelli, M., Santini, D., Altan-Bonnet, G., Kaplan, R., Norton, L., Nishimoto, N., Huszar, D., Layden, D. & Bromberg, J. 2013. The IL-6/JAK/Stat3 feed-forward loop drives tumorigenesis and metastasis. Neoplasia 15: 848-862.

Chioni, A.M., Fraser, S.P., Pani, F., Foran, P., Wilkin, G.P., Diss, J.K. & Djamgoz, M.B. 2005. A novel polyclonal antibody specific for the Na(v)1.5 voltage-gated Na(+) channel 'neonatal' splice form. Journal of Neuroscience Methods 147: 88-98.

Diaz, D., Delgadillo, D.M., Hernández-Gallegos, E., Ramírez-Domínguez, M.E., Hinojosa, L.M., Ortiz, C.S., Berumen, J., Camacho, J. & Gomora, J.C. 2007. Functional expression of voltage-gated sodium channels in primary cultures of human cervical cancer. Journal Cell Physiology 210: 469-478.

Diss, J.K., Fraser, S.P. & Djamgoz, M.B. 2004. Voltage-gated Na+ channels: Multiplicity of expression, plasticity, functional implications and pathophysiological aspects. Europe Biophysic Journal 33: 180-193.

Felio, K., Nguyen, H., Dascher, C.C., Choi, H.J., Li, S., Zimmer, M.I., Colmone, A., Moody, D.B., Brenner, M.B. & Wang, C.R. 2009. CD1-restricted adaptive immune responses to Mycobacteria in human group 1 CD1 transgenic mice. The Journal of Experimental Medicine 206: 2497-2509.

Fraser, S.P., Diss, J.K., Chioni, A.M., Mycielska, M.E., Pan, H., Yamaci, R.F., Pani, F., Siwy, Z., Krasowska, M., Grzywna, Z., Brackenbury, W.J., Theodorou, D., Koyutürk, M., Kaya, H., Battaloglu, E., De Bella, M.T., Slade, M.J., Tolhurst, R., Palmieri, C., Jiang, J., Latchman D.S., Coombes, R.C. & Djamgoz, M.B. 2005. Voltage-gated sodium channel expression and potentiation of human breast cancer metastasis. Clinical Cancer Research 11: 5381-5389.

Gao, R., Shen, Y., Cai, J., Lei, M. & Wang, Z. 2010. Expression of voltage-gated sodium channel subunit in human ovarian cancer. Oncology Reports 23: 1293-1299.

Gao, R., Cao, T., Chen, H., Cai, J., Lei, M. & Wang, Z. 2019. Nav1.5-E3 antibody inhibits cancer progression. Translational Cancer Research 8: 44-50.

Gillet, L., Roger, S., Besson, P., Lecaille, F., Gore, J., Bougnoux, P., Lalmanach, G. & Le Guennec, J.Y. 2009. Voltage-gated sodium channel activity promotes cysteine cathepsin-dependent invasiveness and colony growth of human cancer cells. The Journal of Biological Chemistry 284: 8680-8691.

Giuliano, A.E., Edge, S.B. & Hortobagyi, G.N. 2018. Eighth edition of the AJCC cancer staging manual: Breast cancer. Annal of Surgical Oncology 25: 1783-1785.

Greenfield, E.A. 2020. Standard immunization of mice, rats, and hamsters. Cold Spring Harbour Protocol doi:10.1101/pdb.prot100297

Jones, D., Pereira, E.R. & Padera, T.P. 2018. Growth and immune evasion of lymph node metastasis. Frontiers in Oncology 8: 36.

Kamarulzaman, N.S., Dewadas, H.D., Leow, C.Y., Yaacob, N.S. & Mokhtar, N.F. 2017. The role of REST and HDAC2 in epigenetic dysregulation of Nav1.5 and nNav1.5 expression in breast cancer. Cancer Cell International 17: 74.

Kujawski, M., Kortylewski, M., Lee, H., Herrmann, A., Kay, H. & Yu, H. 2008. Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. The Journal of Clinical Investigation 118(10): 3367-3377.

Luo, Q., Wu, T., Wu, W., Chen, G., Luo, X., Jiang, L., Tao, H., Rong, M., Kang, S. & Deng, M. 2020. The functional role of voltage-gated sodium channel Nav1.5 in metastatic breast cancer. Frontiers in Pharmacology 11: 1111.

Madu, C.O., Wang, S., Madu, C.O. & Lu, Y. 2020. Angiogenesis in breast cancer progression, diagnosis, and treatment. Journal of Cancer 11(15): 4474-4494.

Masjedi, A., Hashemi, V., Hojjat-Farsangi, M., Ghalamfarsa, G., Azizi, G., Yousefi, M. & Jadidi-Niaragh, F. 2018. The significant role of interleukin-6 and its signaling pathway in the immunopathogenesis and treatment of breast cancer. Biomedicine & Pharmacotherapy 108: 1415-1424.

Mishra, P., Pandey, C.M., Singh, U., Gupta, A., Sahu, C. & Keshri, A. 2019. Descriptive statistics and normality tests for statistical data. Annals of Cardiac Anaesthesia 22(1): 67-72.

Nelson, M., Yang, M., Millican-Slater, R. & Brackenbury, W.J. 2015. Nav1.5 regulates breast tumor growth and metastatic dissemination in vivo. Oncotarget 6(32): 32914-32929.

Norsa'adah, B. 2013. Univariable Analyses using IBM SPSS Statistics Version 20.0. Kota Bharu, Malaysia: Universiti Sains Malaysia.

Okuda, T., Shimizu, K., Hasaba, S. & Date, M. 2019. Induction of specific adaptive immune responses by immunization with newly designed artificial glycosphingolipids. Scientific Reports 9: 18803.

Onganer, P.U. & Djamgoz, M.B. 2005. Small-cell lung cancer (human): Potentiation of endocytic membrane activity by voltage-gated Na(+) channel expression in vitro. The Journal of Membrane Biology 204(2): 67-75.

Onkal, R., Mattis, J.H., Fraser, S.P., Diss, J.K., Shao, D., Okuse, K. & Djamgoz, M.B. 2008. Alternative splicing of Nav1.5: An electrophysiological comparison of 'neonatal' and 'adult' isoforms and critical involvement of a lysine residue. Journal of Cellular Physiology 216(3): 716-726.

Paschall, A.V. & Liu, K. 2016. An orthotopic mouse model of spontaneous breast cancer metastasis. Journal of Visualized Experiments 114: 54040.

Patel, F. & Brackenbury, W.J. 2015. Dual roles of voltage-gated sodium channels in development and cancer. The International Journal of Developmental Biology 59(7-9): 357-366.

Potdar, P.D. & Lotey, N.K. 2015. Role of circulating tumor cells in future diagnosis and therapy of cancer. Journal Cancer Metastasis Treat 1: 44-56.

Pulaski, B.A. & Ostrand-Rosenberg, S. 2001. Mouse 4T1 breast tumor model. Current Protocols in Immunology 20: 22.

Rajaratinam, H., Rasudin, N.S., Al Astani, T., Mokhtar, N.F., Yahya, M.M., Zain, W., Asma-Abdullah, N. & Fuad, W. 2021. Breast cancer therapy affects the expression of antineonatal Nav1.5 antibodies in the serum of patients with breast cancer. Oncology Letters 21(2): 108.

Roger, S., Besson, P. & Le Guennec, J.Y. 2003. Involvement of a novel fast inward sodium current in the invasion capacity of a breast cancer cell line. Biochimica et Biophysica Acta 1616(2): 107-111.

Rook, M.B., Evers, M.M., Vos, M.A. & Bierhuizen, M.F. 2012. Biology of cardiac sodium channel Nav1.5 expression. Cardiovascular Research 93(1): 12-23.

Sauter, B.V., Martinet, O., Zhang, W.J., Mandeli, J. & Woo, S.L. 2000. Adenovirus-mediated gene transfer of endostatin in vivo results in high level of transgene expression and inhibition of tumor growth and metastases. Proceedings of the National Academy of Sciences of the United States of America 97(9): 4802-4807.

Schmittgen, T.D. & Livak, K.J. 2008. Analyzing real-time PCR data by the comparative C(T) method. Nature Protocols 3(6): 1101-1108.

Stuelten, C.H., Parent, C.A. & Montell, D.J. 2018. Cell motility in cancer invasion and metastasis: Insights from simple model organisms. Nature Reviews Cancer 18(5): 296-312.

Tao, K., Fang, M., Alroy, J. & Sahagian, G.G. 2008. Imagable 4T1 model for the study of late stage breast cancer. BMC Cancer 8: 228.

Tsukamoto, H., Fujieda, K., Senju, S., Ikeda, T., Oshiumi, H. & Nishimura, Y. 2018. Immune-suppressive effects of interleukin-6 on T-cell-mediated anti-tumor immunity. Cancer Science 109(3): 523-530.

Uddback, I.E.M., Pedersen, L.M.I., Pedersen, S.R., Steffensen, M.A., Holst, P.J., Thomsen, A.R. & Christensen, J. 2016. Combined local and systemic immunization is essential for durable T-cell mediated heterosubtypic immunity against influenza A virus. Scientific Reports 6: 20137.

Yamaci, R.F., Fraser, S.P., Battaloglu, E., Kaya, H., Erguler, K., Foster, C.S. & Djamgoz, M. 2017. Neonatal Nav1.5 protein expression in normal adult human tissues and breast cancer. Pathology, Research and Practice 213(8): 900-907.

Yang, M., James, A.D., Suman, R., Kasprowicz, R., Nelson, M., O'Toole, P.J. & Brackenbury, W.J. 2020. Voltage-dependent activation of Rac1 by Nav 1.5 channels promotes cell migration. Journal of Cellular Physiology 235(4): 3950-3972.

Yang, M., Kozminski, D.J., Wold, L.A., Modak, R., Calhoun, J.D., Isom, L.L. & Brackenbury, W.J. 2012. Therapeutic potential for phenytoin: Targeting Na(v)1.5 sodium channels to reduce migration and invasion in metastatic breast cancer. Breast Cancer Research and Treatment 134(2): 603-615.

Ye, Q., Ling, S., Zheng, S. & Xu, X. 2019. Liquid biopsy in hepatocellular carcinoma: Circulating tumor cells and circulating tumor DNA. Molecular Cancer 18(1): 114.

 

*Pengarang untuk surat-menyurat; email: wanezumi@usm.my

 

 

   

   

sebelumnya