Sains Malaysiana 51(9)(2022): 3081-3094


Potensi Bioremediasi Plastik Polietilena Tereftalat (PET)

(Bioremediation Potential of Polyethylene Terephthalate (PET) Plastics)




1Jabatan Sains Biologi dan Bioteknologi, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

2Jabatan Sains Makanan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

3Jabatan Sains Kimia, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

  Diserahkan: 26 Februari 2022/Diterima: 17 Mei 2022


Penghasilan plastik yang mesra ekonomi dan kepelbagaian penggunaannya menyebabkan permintaan terhadap plastik meningkat setiap tahun. Antaranya adalah plastik jenis polietilena tereftalat (PET) yang dihasilkan melalui pempolimeran dua monomer iaitu asid tereftalik (TPA) dan etilena glikol (EG). PET menjadi pilihan dalam produk pembungkusan makanan dan minuman kerana cirinya yang tahan haba, tahan lama, mudah dibentuk dan ringan serta kos penghasilan yang murah. Walau bagaimanapun, hal ini telah menjadikan PET sebagai pencemar alam sekitar kerana penggunaannya berjangka pendek dan pakai buang, serta sukar untuk dicuraikan secara semula jadi dan dikitar semula. PET juga berupaya menjadi mendakan kerana mempunyai kehabluran dan ketumpatan yang tinggi seterusnya menghasilkan mikroplastik bersaiz <5 mm yang berpotensi menjadi ancaman kepada rantai makanan. Kaedah bioremediasi antara salah satu alternatif yang boleh dilaksanakan dalam menangani masalah lambakan bahan buangan plastik PET. Justeru, ulasan ini akan membincangkan empat pendekatan bioremediasi dengan penggunaan bakteria sebagai agen biopencurai PET melalui penggunaan (1) bakteria penghasil biofilem, (2) biosurfaktan, (3) biotinjauan secara pendekatan biologi molekul dan (4) aplikasi bio-pembawa yang boleh dilaksanakan dalam menguraikan bahan buangan PET.


Kata kunci: Asid tereftalik (TPA); biofilem; biosurfaktan; bio-pembawa; etilena glikol (EG)



The production of economically friendly plastics and their diversity of uses cause the demand for plastics to increase every year. Among them are polyethylene terephthalate (PET) type plastics produced through the polymerization of two monomers, namely terephthalic acid (TPA) and ethylene glycol (EG). PET is the choice in food and beverage packaging products because of its heat-resistant, durable, easy-to-mold and lightweight features as well as low production costs. However, this has made PET an environmental pollutant due to its short -term use and disposable, as well as the difficulty to decompose naturally and recycled.  PET is also capable to precipitate due to its high crystallinity and density which in turn produced microplastics of size <5 mm which are potentially a threat to the food chain. Bioremediation methods are among the alternatives that can be implemented in dealing with the problem of PET plastic waste abundance. Thus, this review will discuss four bioremediation approaches with the use of bacteria as PET biodegrader using (1) biofilms producing bacteria, (2) biosurfactants, (3) molecular biology approach and (4) feasible bio-carrier applications in decompose PET waste.


Keywords: Biofilms; biosurfactant; bio-carrier; ethylene glycol (EG); terephthalic acid (TPA)



Abbasnezhad, H., Gray, M. & Foght, J.M. 2011. Influence of adhesion on aerobic biodegradation and bioremediation of liquid hydrocarbons. Applied Microbiology and Biotechnology 92: 653-675.

Almeida, J.M., Alnoch, R.C., Souza, E.M., Mitchell, D.A. & Krieger, N. 2020. Metagenomics: Is it a powerful tool to obtain lipases for application in biocatalysis? Biochimica et Biophysica Acta - Proteins and Proteomics 1868(2): 140320.

Amelia, T.S.M., Khalik, W.M.A.W.M., Ong, M.C., Shao, Y.T., Pan, H.J. & Bhubalan, K. 2021. Marine microplastics as vectors of major ocean pollutants and its hazards to the marine ecosystem and humans. Progress in Earth and Planetary Science 8: 12.

Andrady, A.L. 2011. Microplastics in the marine environment. Marine Pollution Bulletin 62(8): 1596-1605.

Aqma, W.S. & Quilty, B. 2015. Influences of extracellular polymeric substances (EPS) for autoaggregation of Pseudomonas putida CP1 during growth on mono-chlorophenol. Malaysian Journal of Microbiology 11(3): 246-253.

Ashton, K., Holmes, L. & Turner, A. 2010. Association of metals with plastic production pellets in the marine environment. Marine Pollution Bulletin 60(11): 2050-2055.

Auta, H.S., Emenike, C.U. & Fauziah, S.H. 2017a. Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions. Environment International 102: 165-176.

Auta, H.S., Emenike, C.U. & Fauziah, S.H. 2017b. Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation. Environmental Pollution 231: 1552-1559.

Bowley, J., Baker-Austin, C., Porter, A., Hartnell, R. & Lewis, C. 2021. Oceanic hitchhikers - Assessing pathogen risks from marine microplastic. Trends in Microbiology 29(2): 107-116.

Bustamante, M., Durán, N. & Diez, M.C. 2012. Biosurfactants are useful tools for the bioremediation of contaminated soil: A review. Journal of Soil Science and Plant Nutrition 12(4): 667-687.

Carr, C.M., Clarke, D.J. & Dobson, A.D. 2020. Microbial polyethylene terephthalate hydrolases: Current and future perspectives. Frontiers in Microbiology 11: 571265.

Chang, M. 2015. Reducing microplastics from facial exfoliating cleansers in wastewater through treatment versus consumer product decisions. Marine Pollution Bulletin 101(1): 330-333.

Chen, H.L., Nath, T.K., Chong, S., Foo, V., Gibbins, C. & Lechner, A.M. 2021. The plastic waste problem in Malaysia: Management, recycling and disposal of local and global plastic waste. SN Applied Sciences 3: 437.

Chen, Q., Li, J., Liu, M., Sun, H. & Bao, M. 2017. Study on the biodegradation of crude oil by free and immobilized bacterial consortium in marine environment. PLoS ONE 12(3): e0174445.

Cole, M., Lindeque, P., Halsband, C. & Galloway, T.S. 2011. Microplastics as contaminants in the marine environment: A review. Marine Pollution Bulletin 62(12): 2588-2597.

Dąbrowska, G.B., Tylman-Mojżeszek, W., Mierek-Adamska, A., Richert, A. & Hrynkiewicz, K. 2021. Potential of Serratia plymuthica IV-11-34 strain for biodegradation of polylactide and poly (ethylene terephthalate). International Journal of Biological Macromolecules 193: 145-153.

Essel, R., Engel, L., Carus, M. & Ahrens, R.H. 2015. Sources of Microplastics Relevant to Marine Protection in Germany. Dessau-Roßlau: Federal Environment Agency. hlm. 1-44.

Farzi, A., Dehnad, A. & Fotouhi, A.F. 2019. Biodegradation of polyethylene terephthalate waste using Streptomyces species and kinetic modeling of the process. Biocatalysis and Agricultural Biotechnology 17: 25-31.

Gao, R. & Sun, C. 2021. A marine bacterial community capable of degrading poly(ethylene terephthalate) and polyethylene. Journal of Hazardous Materials 416: 125928.

Geyer, R., Jambeck, J.R. & Law, K.L. 2017. Production, use, and fate of all plastics ever made. Science Advances 3(7): 25-29.

Ghatge, S., Yang, Y., Ahn, J.H. & Hur, H.G. 2020. Biodegradation of polyethylene: A brief review. Applied Biological Chemistry 63: 27.

Ghosh, S., Qureshi, A. & Purohit, H.J. 2019. Microbial degradation of plastics: Biofilms and degradation pathways. Dalam Contaminants in Agriculture and Environment: Health Risks and Remediation, disunting olehKumar, V., Kumar, R., Singh, J. & Kumar, P. India: Agro Environ Media. hlm. 184-199.

Gilan, I., Hadar, Y. & Sivan, A. 2004. Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Applied Microbiology Biotechnology 65: 97-104.

Gomes, T.S., Visconte, L.L.Y. & Pacheco, E.B.A.V. 2019. Life cycle assessment of polyethylene terephthalate packaging: An overview. Journal of Polymers and the Environment 27(3): 533-548.

Gong, J., Kong, T., Li, Y., Li, Q., Li, Z. & Zhang, J. 2018. Biodegradation of microplastic derived from poly(ethylene terephthalate) with bacterial whole-cell biocatalysts. Polymers 10(1326): 1-13.

Gutierrez, T., Berry, D., Yang, T., Mishamandani, S., McKay, L., Teske, A. & Aitken, M.D. 2013. Role of bacterial exopolysaccharides (EPS) in the fate of the oil released during the deepwater horizon oil spill. PLoS ONE 8(6): e67717.

Hahladakis, J.N., Velis, C.A., Weber, R., Iacovidou, E. & Purnell, P. 2018. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. Journal of Hazardous Materials 344: 179-199.

Hamid, F.S., Bhatti, M.S., Anuar, N., Anuar, N., Mohan, P. & Periathamby, A. 2018. Worldwide distribution and abundance of microplastic: How dire is the situation? Waste Management and Research 36(10): 873-897.

Han, Y.N., Wei, M., Han, F., Fang, C., Wang, D., Zhong, Y.J., Guo, C.L., Shi, X.Y., Xie, Z.K. & Li, F.M. 2020. Greater biofilm formation and increased biodegradation of polyethylene film by a microbial consortium of Arthrobacter sp. and Streptomyces sp. Microorganisms 8(12): 1979.

Hasanpour, M. & Hatami, M. 2020. Application of three dimensional porous aerogels as adsorbent for removal of heavy metal ions from water/wastewater: A review study. Advances in Colloid and Interface Science 284: 102247.

Hazaimeh, M., Abd Mutalib, S., Abdullah, P.S., Kok Kee, W. & Surif, S. 2014. Enhanced crude oil hydrocarbon degradation by self-immobilized bacterial consortium culture on sawdust and oil palm empty fruit bunch. Annals of Microbiology 64: 1769-1777.

Hwang, J., Choi, D., Han, S., Jung, S.Y., Choi, J. & Hong, J. 2020. Potential toxicity of polystyrene microplastic particles. Scientific Reports 10: 7391.

Hwi, T.Y., Ibrahim, Y.S. & Khalik, W.M.A.W.M. 2020. Microplastic abundance, distribution, and composition in Sungai Dungun, Terengganu, Malaysia. Sains Malaysiana 49(7): 1479-1490.

Issac, M.N. & Kandasubramanian, B. 2021. Effect of microplastics in water and aquatic systems. Environmental Science and Pollution Research 28(16): 19544-19562.

Kamimura, N. & Masai, E. 2014. The protocatechuate 4,5-cleavage pathway: Overview and new findings. Dalam Biodegradative Bacteria, disunting olehNojiri, H., Tsuda, M., Fukuda, M. & Kamagata, Y. hlm. 207-226.

Kamimura, N., Aoyama, T., Yoshida, R., Takahashi, K., Kasai, D., Abe, T., Mase, K., Katayama, Y., Fukuda, M. & Masai, E. 2010. Characterization of the protocatechuate 4,5-cleavage pathway operon in Comamonas sp. strain E6 and discovery of a novel pathway gene. Applied Environmental Microbiology 76(24): 8093-8101.

Kavitha, R. & Bhuvaneswari, V. 2021. Assessment of polyethylene degradation by biosurfactant producing ligninolytic bacterium. Biodegradation 32: 531-549.

Kawai, F., Kawabata, T. & Oda, M. 2019. Current knowledge on enzymatic PET degradation and its possible application to waste stream management and other fields. Applied Microbiology and Biotechnology 103(11): 4253-4268.

Kong, Y. & Hay, J.N. 2002. The measurement of the crystallinity of polymers by DSC. Polymer 43: 3873-3878.

Leslie, H.A. 2014. Review of Microplastics in Cosmetics – Scientific Background on a Potential Source of Plastic Particulate Marine Litter to Support Decision-Making. IVM - Institute for Environmental Studies, Amsterdam.

Li, B., Ding, Y., Cheng, X., Sheng, D., Xu, Z., Rong, Q., Wu, Y., Zhao, H., Ji, X. & Zhang, Y. 2020. Polyethylene microplastics affect the distribution of gut microbiota and inflammation development in mice. Chemosphere 244: 125492.

Li, W.J., Jayakody, L.N., Franden, M.A., Wehrmann, M., Daun, T., Hauer, B., Blank, L.M., Beckham, G.T., Klebensberger, J. & Wierckx, N. 2019. Laboratory evolution reveals the metabolic and regulatory basis of ethylene glycol metabolism by Pseudomonas putida KT2440. Environmental Microbiology 21(10): 3669-3682.

Marchut‑Mikolajczyk, O., Drożdżyński, P., Pietrzyk, D. & Antczak, T. 2018. Biosurfactant production and hydrocarbon degradation activity of endophytic bacteria isolated from Chelidonium majus L. Microbial Cell Factories 17: 171.

Maurya, A., Bhattacharya, A. & Khare, S.K. 2020. Enzymatic remediation of polyethylene terephthalate (PET)–based polymers for effective management of plastic wastes: An overview. Frontiers in Bioengineering and Biotechnology 8: 602325.

Miandad, R., Rehan, M., Barakat, M.A., Aburiazaiza, A.S., Khan, H., Ismail, I.M.I., Dhavamani, J., Gardy, J., Hassanpour, A. & Nizami, A.S. 2019. Catalytic pyrolysis of plastic waste: Moving toward pyrolysis based biorefineries. Frontiers in Energy Research 7: 1-27.

Mohanan, N., Montazer, Z., Sharma, P.K. & Levin, D.B. 2020. Microbial and enzymatic degradation of synthetic plastics. Frontiers in Microbiology 11: 1-22.

Montazer, Z., Najafi, M.B.H. & Levin, D.B. 2020. Challenges with verifying microbial degradation of polyethylene. Polymers 12(1): 123.

Mukherjee, S., Chowdhuri, U.R., Patit, P. & Kundu, P.P. 2016. Bio-degradation of polyethylene waste by simultaneous use of two bacteria: Bacillus licheniformis for production of bio-surfactant and Lysinibacillus fusiformis for bio-degradation. RSC Advances 6: 2982-2992.

Nita, L.E., Ghilan, A., Rusu, A.G., Neamtu, I. & Chiriac, A.P. 2020. New trends in bio-based aerogels. Pharmaceutics 12(5): 449.

Patria, M.P., Santoso, C.A. & Tsabita, N. 2020. Microplastic ingestion by periwinkle snail Littoraria scabra and mangrove crab Metopograpsus quadridentata in Pramuka Island, Jakarta Bay, Indonesia. Sains Malaysiana 49(9): 2151-2158.

Puglisi, E., Romaniello, F., Galletti, S., Boccaleri, E., Frache, A. & Cocconcelli, P.S. 2019. Selective bacterial colonization processes on polyethylene waste samples in an abandoned landfill site. Scientific Reports 9: 14138.

Quartinello, F., Vajnhandl, S., Valh, V.J., Farmer, T.J., Vončina, B., Lobnik, A., Acero, E.H., Pellis, A. & Guebitz, G.M. 2017. Synergistic chemo-enzymatic hydrolysis of poly(ethylene terephthalate) from textile waste. Microbial Biotechnology 10(6): 1376-1383.

Rasli, S.R.A.M. 2018. Penggunaan aerogel selulosa bagi penjerapan bakteria untuk bioremediasi minyak mentah. MSc. Tesis. Universiti Kebangsaan Malaysia (Tidak diterbitkan).

Ribitsch, D., Acero, E.H., Greimel, K., Eiteljoerg, I., Trotscha, E., Freddi, G., Schwab, H. & Guebitz, G.M. 2012. Characterization of a new cutinase from Thermobifida alba for PET-surface hydrolysis. Biocatalysis and Biotransformation 30(1): 2-9.

Roberts, C., Edwards, S., Vague, M., León-Zayas, R., Scheffer, H., Chan, G., Swartz, N.A. & Mellies, J.L. 2020. Environmental consortium containing Pseudomonas and Bacillus species synergistically degrades polyethylene terephthalate plastic. Applied And Environmental Science 5(6).

Rochman, C.M., Hentschel, B.T. & Teh, S.J. 2014. Long-term sorption of metals is similar among plastic types: Implications for plastic debris in aquatic environments. PLoS ONE 9(1): e01151-20.

Salvador, M., Abdulmutalib, U., Gonzalez, J., Kim, J., Smith, A.A., Faulon, J.L., Wei, R., Zimmermann, W. & Jimenez, J.I. 2019. Microbial genes for a circular and sustainable bio-PET economy. Genes 10(373): 1-19.

Sarijan, S., Azman, S., Said, M.I.M. & Lee, M.H. 2019. Ingestion of microplastics by commercial fish in Skudai river, Malaysia. EnvironmentAsia 12(3): 75-84.

Sasoh, M., Masai, E., Ishibashi, S., Hara, H., Kamimura, N., Miyauchi, K. & Fukuda, M. 2006. Characterization of the terephthalate degradation genes of Comamonas sp. strain E6. Applied and Environmental Microbiology 72(3): 1825-1832.

Sharma, B., Rawat, H., Pooja & Sharma, R. 2017. Bioremediation - A progressive approach toward reducing plastic wastes. International Journal of Current Microbiology and Applied Sciences 6(12): 1116-1131.