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Solvability of Cubic Equations over 3  
(Kebolehselesaian Persamaan Kubik ke atas 3)
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ABSTRACT

We provide a solvability criterion for a cubic equation in domains , 3, and 3.
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ABSTRAK

Kami memberi kriteria kebolehselesaian untuk persamaan kubik dalam domain , 3, dan 3.

Kata kunci: Kriteria kebolehselesaian; nombor p-adic; persamaan kubik

INTRODUCTION

This study is a continuation of papers Mukhamedov et 
al. (2014, 2013), Mukhamedov and Saburov (2013) and 
Saburov and Ahmad (2014) where a solvability criterion 
for a cubic equation over the p–adic field p, where p ≠ 3, 
was provided. In this paper, we shall provide a solvability 
criterion for the cubic equation over domains, , 3, and 
3. 
	 The field p of p–adic numbers which was introduced 
by German mathematician K. Hensel was motivated 
primarily by an attempt to bring the ideas and techniques 
of the power series into number theory. Their canonical 
representation is analogous to the expansion of analytic 
functions into power series. This is one of the manifestations 
of the analogy between algebraic numbers and algebraic 
functions. 
	 For a fixed prime p, by p it is denoted the field of 
p-adic numbers, which is a completion of the rational 
numbers with respect to the non-Archimedean norm 
⎟⋅⎜p:→ given by 

	 	 (1) 

where, x = pr  with r, m ∈ , n ∈ , (m,p) = (n,p) = 1. 

A number is called a p-order of x and it is denoted by 

ordp(x) = r.
	 Any p–adic number x ∈ p can be uniquely represented 
in the following canonical form 

	 x = pordp(x) (x0 + x1 . p + x2 . p
2 + …)

where x0  ∈ {1,2,… p – 1} and xi  ∈ {0,1,2,… p – 1},  i ≥ 1, 
(Borevich & Shafarevich 1966; Koblitz 1984) 
	 More recently, numerous applications of p–adic 

numbers have shown up in theoretical physics and quantum 
mechanics (Beltrametti & Cassinelli 1972; Khrennikov 
1994, 1991; Volovich 1987). 
	 Unlike the field  of real numbers, in general, the 
cubic equation ax3 + bx2 + cx + d = 0 is not necessary to 
have a solution in p, where a,b,c,d ∈ p with a ≠ 0. For 
example, the following simple cubic equation x3 = p does 
not have any solution in p. Therefore, it is natural to find 
a solvability criterion for the cubic equation in p. One of 
methods to find solutions of the cubic equation in a local 
field is the Cardano method. However, by means of the 
Cardano method, we could not tell an existence of solutions 
of any cubic equations (Mukhamedov et al. 2014, 2013). 
	 To the best of our knowledge, we could not find 
the solvability criterion in an explicit form for the cubic 
equation in the Bible books of p-adic analysis and algebraic 
number theory (Apostol 1972; Cohen 2007; Gouvea 
1997; Koblitz 1984; Lang 1994; Neukirch 1999; Schikhof 
1984; Serre 1979). The solvability criterion for the cubic 
equation over p, for all prime p ≠ 3, was provided in 
papers Mukhamedov et al. (2014, 2013) and Saburov and 
Ahmad (2014). This problem was open for the case p = 3 
and we are aiming to solve it in this paper. 
	 We know that, by means of suitable substitutions, any 
cubic equation can be written a depressed cubic equation 
form 

	 x3 + ax = b,	 (2) 

where a, b ∈ p. It is worth mentioning that there are 
some cubic equations which do not have any solutions 
in  (resp. in p) but have solutions in p(resp. in p) 
(Mukhamedov et al. (2014, 2013). Therefore, finding a 
solvability criterion for the depressed cubic equation (2) in 
domains , p, p  is of independent interest. In this paper, 
we provide a solvability criterion for a cubic equation in 
the domains , 3 and 3. 
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	 The solvability criterion for the cubic equation (2) over 
the finite field  = /p, where a, b ∈  was provided in 
papers Serre 2003 and Sun 2007. Since  is a subgroup 
of p, our results extend the results of papers Serre 2003 
and Sun 2007.

SOME AUXILIARY RESULTS

In this section, we shall present some auxiliary results 
which assist us to find a solvability criterion for a cubic 
equation 

	 x3 + ax = b,	 (3) 

over , where a, b ∈ 3. In the case ab = 0, the 
solvability criterion for the cubic equation (4) was given 
in Mukhamedov and Saburov (2013). In what follows we 
assume that ab ≠ 0. 
	 Let 

	 p = {x ∈ p:⎜x⎟p ≤ 1},  = {x ∈ p:⎜x⎟p = 1},  

be sets of p–adic integers and unities, respectively. 
	 We know that any p–adic unity x ∈  has a unique 
canonical representation 

	 x = x0 + x1 . p + x2 . p
2 + …

where x0 ∈ {1,2,… p – 1} and xi ∈ {0,1,2,… p – 1} for any 
i ≥ 1. Moreover, any nonzero p–adic number x ∈ p has a 
unique representation of the form , where x* ∈ . 

	 Let us introduce some notations which will be used 
throughout this paper. 

	 Let x ∈ p  be a nonzero p–adic number and  

with x* ∈  

	 x* = x0 + x1p + x2p
2 + … + xk p

k + …

where x0 ∈ {1, …, p – 1} and xi ∈ {0,1,…, p – 1} for any 
i ∈ . 
	 For given numbers i0, j0 ∈ {1,…, p – 1} and i1, …, ik, 
j1, …, jl ∈ {0,1,…, p – 1}, we define the following sets 

	  [i0,i1,…,ik] = {x*∈ :x* = i0+i1 p+…+ik p
k+xk+1 p

k+1+…}

	  [i0,i1,…,ik⎜j0,j1,…,jl] =  [i0,i1,…ik] ×  [j0,j1,…,jl]

	 The following results are rather simple and might be 
well-known in the literature.

Proposition 1 Let r, s ∈ . The quadratic equation 
		
	 x2 + rx = s,	 (4) 

has a solution in  if and only if either one of the 
following conditions holds true: (i) s = 0 or (ii) s = 1 and 
r = 0 or (iii) s = –1 and r ≠ 0. Moreover, the following 
statements hold true: 

If s = 0 then x = 0, –r are solutions of the quadratic 
equation (4); 

If s = 1 and r = 0 then x = ±1 are solutions of the 
quadratic equation (4); and

If s = –1 and r ≠ 0 then x = r is a solution of the 
quadratic equation (4). 

Corollary 2 If the quadratic equation (4) has solutions in 
 then for any ε ≠ 0, there exists at least one solution x0 of 

the quadratic equation (4) such that x0 ≠ r + ε.

Let us consider the following sets in 

	 Δ = Δ1 ∪ Δ2,  
	 Δ1 = Δ11 ∪ Δ12 ∪ Δ13, 
	 Δ2 = Δ21 ∪ Δ22 ∪ Δ23,	 	 (5) 

where 

	

	

	

and all entries of  [2, …⎜1, …] and  [2, …⎜2, …] 
belong to the set {0,1,2}. 
	 We need the following auxiliary results. 

Proposition 3 Let  ⎜b⎜3 = 1,	 a = 3a*, a* ∈  with
		  a*	= a0 + 3a1 + 9a2 + …,
		  b	 = b* = b0 + 3b1 + 9b2 + …. 

Then the following statements hold true: 

One has that  ≡ b (mod 9) if and only if b* ∈  [1,0] 
∪  [2,2]; 

One has that   + ab0 ≡ b (mod 9) with a0 = 1 if and 
only if  (a*, b*) ∈  [1⎜1,1] ∪  [1⎜2,1]; and
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One has that  + ab0 ≡ b (mod 27) with a0 = 2 if and 
only if 

	 	 (6)

Moreover, the quadratic congruent equation

 
	 x2 + (b0 + 1 + b0a1)x ≡ b0  (mod 3)	 (7) 

has a solution if and only if (a*, b*) ∈ Δ, where the set Δ 
is defined by (5).

Proof. We shall prove the theorem case by case. 

The congruent equation   ≡ b (mod 9) has a solution if 
and only if   ≡ b0 + 3b1 (mod 9) has a solution. It is clear 
that the last congruent equation has a solution if and only 
if b0 = 1, b1 = 0 or b0 = 2, b1 = 2. It means that b* ∈  
[1,0] ∪  [2,2].

Let a0 = 1. The congruent equation   ≡ ab0 ≡ b (mod 9) 
has a solution if and only if   + 3b0 ≡ b0 + 3b1 (mod 9)
has a solution. It is clear that the last congruent equation 
has a solution if and only if b0 = 1, b1 = 1 or b0 = 2, b1 = 1. 
It means that (a*, b*) ∈  [1⎜1,1] ∪  [1⎜2,1].

Let a0 = 2. It is clear that 

	 a = 3a* = 6 + 9a1 + 27a2 + …,  
	 ab0 = 6b0 + 9a1b0 + 27a2b0 + ….

	 The congruent equation  + ab0 ≡ b (mod 27)  has a 
solution if and only if   + 6b0 + 9a1b0 ≡ b0 + 3b1 + 9b2 
(mod 27) has a solution. We then have that 

	   + 5b0 + 9a1b0 ≡ 3b1 + 9b2 (mod 27). 	 (8) 

	 We know that b0 ∈ {1,2} if and only if  + 2 = 3b0. 
Therefore, we get that 

	  = 3b0 – 2,     = 3  – 2b0,  	
	   + 5b0 = 3   + 3b0 = 12b0 – 6.

The congruence equation (8) takes the following form 

	 12b0 – 6 + 9a1b0

	 ≡ 3b1 + 9b2 (mod 27)  or  4b0 – 2 + 3a1b0

	 ≡ b1 + 3b2 (mod 9).	 (9)

	 This yields that 4b0 – 2 ≡ b1 (mod 3) or b1 ≡ b0 + 1 
(mod 3). Thus, if b0 = 1 then b1 = 2 and it follows from (9) 
that a1 = b2; if b0 = 2 then b1 = 0 and it follows from (9) 
that a1 = 2 – b2. Consequently, we have that (a*, b*) ∈  
(  [2,i⎜1,2,i] ∪  [2,2 – i⎜2,0,i]. 

In this case, we want to show that 

	

	 (10)

	 Let (a*,b*) ∈ [2, i⎜1,2,i]. This means that a0 = 2, 
a1 = b2, b0 = 1, b1 = 2. Then 

		  a	 ≡	 3a0 + 9a1 + 27a2 (mod 81),
		  b	 ≡	 b0 + 3b1 + 9b2 + 27b3 ≡ 1 + 6 + 9b2 + 27b3 
				    (mod 81),
		  ab0	 ≡	 3a0b0 + 9a1b0 + 27a2b0 ≡ 6 + 9b2 + 27a2 
				    (mod 81), 
	 b–ab0–  	≡ 27(b3 – a3) (mod 81)

This yields that  . 

	 Let (a*,b*) ∈  [2, 2 – i⎜2,0, i]. This means that 
a0 = 2, a1 = 2 – b2, b0 = 2, b1 = 0. Then 

		  a	 ≡	 3a0 + 9a1 + 27a2 (mod 81),
		  b	 ≡	 b0 + 3b1 + 9b2 + 27b3 ≡ 2 + 9b2 + 27b3 
				    (mod 81),
		  ab0	 ≡	 3a0b0 + 9a1b0 + 27a2b0 ≡ 12 
				    + 18(2 – b2) + 54a2 (mod 81), 
	 b–ab0–  	≡ 27(b2 + b3 – 2a3 – 2) (mod 81)

This yields that  ≡ b2 + b3 + a2 + 1 (mod 3). 

We now study the quadratic congruent equation (7). 
	 Case I. Let (a*,b*) ∈  [2, i⎜1,2, i]. In this case, 
the equation (7) takes the following form

	 x2 + (2 + b2)x ≡ b3 – a2 (mod 3). 

	 Then, due to Proposition 1, the last quadratic 
congruent equation has a solution if and only if either one 
of the following conditions holds true:
a)	 b3 – a2 ≡ 0 (mod 3); 
b)	 b3 – a2 ≡ 1 (mod 3) and 2 + b2 ≡ 0 (mod 3); and
c)	 b3 – a2 ≡ –1 (mod 3) and 2 + b2  0 (mod 3). 

Therefore, we get that 
a)	 a0 = 2, a1 = b2, a2 = b3, b0 = 1, b1 = 2 or

	  

b)	 a0 = 2, a1 = 1, b0 = 1, b1 = 2, b2 = 1, b3 ≡ a2 + 1 
	 (mod 3) or 
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c)	 a0 = 2, a1 = b2, a2 ≡ b3 + 1 (mod 3), 
	 b0 = 1, b1 = 2, b2 ≠ 1 or 

	

Consequently, we have that (a*,b*) ∈ Δ1 = Δ11 ∪ Δ12 ∪ Δ13

	 Case II. Let (a*,b*) ∈  [2,2 – i⎜2,0, i]. In this 
case, the equation (7) takes the following form

	 x2 + 2(2 – b2)x ≡ 2(b2 + b3 + a2 + 1) (mod 3) 

	 Then, due to Proposition 1, the last quadratic 
congruent equation has a solution if and only if either one 
of the following conditions holds true: 
a)	 2(b2 + b3 + a2 + 1) ≡ 0 (mod 3); 
b)	 2(b2 + b3 + a2 + 1) ≡ 1 (mod 3) and 2(2 – b2) ≡ 0       

(mod 3); and
c)	 2(b2 + b3 + a2 + 1) ≡ –1 (mod 3) and 2(2 – b2)  0  

(mod 3). 

Therefore, we have that 
a)	 a0 = 2, a1 ≡ a2 + b3 (mod 3), b0 = 2, b1 = 0, b2 ≡ 2 – (a2 

+ b3) (mod 3) or 

	

b)	 a0 = 2, a1 ≡ 0, a2 = 2 – b3b0 = 2, b1 = 0, b2 ≡ 2 or

	  

c)	 a0 = 2, a1 = 2 – b2, b0 = 2, b1 = 0, b2 ≠ 2, b3 ≡ – (b2 + 
a3) (mod 3) or 

	

Consequently, we obtain that (a*,b*) ∈ Δ2 = Δ21 ∪ Δ22 ∪ Δ23 
	 Therefore, the quadratic congruent equation (7) has a 
solution if and only if (a*,b*) ∈ Δ = Δ1 ∪ Δ2. This completes 
the proof.
	 Finally, Hensel’s lemma would be a powerful tool 
in order to obtain the solvability criterion for the cubic 
equation (3) in the domain . 

Lemma 4 (Hensel’s Lemma, [3]) Let f(x) be polynomial 
whose the coefficients are p–adic integers. Let θ be a p–adic 
integer such that for some i ≥ 0 we have 

	 f (θ) ≡ 0 (mod p2i+1), 
	 f '(θ) ≡ 0 (mod pi),  f '(θ)  0 (mod pi+1). 

	 Then f (x) has a unique p–adic integer root x0 which 
satisfies x0 ≡ θ (mod pi+1). 

SOLVABILITY CRITERIA OVER DOMAINS ,  3 AND 3

In this section, we provide the main results of the paper 
in the domains . 

Theorem 5. Let a, b ∈ 3 with ab ≠ 0 and Δ be the set 
given by (5). Then the following statements hold true: 
1)	 The cubic equation (3) is solvable in  if and only if 

either one of the following conditions holds true: 
	 I.	 ⎜b⎜3 = ⎜a⎜3 > 1; 
	 II.	 ⎜b⎜3 = ⎜a⎜3 = 1, a* ∈ [1]; 
	 III.	 ⎜b⎜3 < ⎜a⎜3 = 1, a* ∈ [2]; 
	 IV.	 ⎜a⎜3 < ⎜b⎜3 = 1 and 

	 	 (i) 	 ⎜a⎜3 = , (a*,b*– ∈ [1⎜1]∪ [1⎜2,1]∪Δ;

		  (ii)	 ⎜a⎜3 < , b* ∈ [1,0] ∪ [2,2]. 

2)	 The cubic equation (3) is solvable in 3 if and only if 
either one of the following conditions holds true: 

	 I.	  

	 II.	  

	 III.	  and 

		  (i) 	

		  (ii) 	  

3)	 The cubic equation (3) is solvable in 3 if and only if 
either one of the following conditions holds true: 

	 I.	  

	 II.	  

	 III.	  and 

		  (i)	

		  (ii)	

Proof. Let a,b ∈ 3, ab ≠ 0 and Δ be the set given by (5). 
	 Case I. We know (Mukhamedov et al. 2014) that if the 
cubic equation (3) has a solution in  then it is necessary 
to have either one of the following conditions: ⎜a⎜3 = ⎜b⎜3 
≥ 1 or ⎜b⎜3 < ⎜a⎜3 = 1 or ⎜a⎜3 < ⎜b⎜3 = 1. We shall study 
case by case. 
	 I.1. Let ⎜a⎜3 = ⎜b⎜3 > 1. In this case, we want to show 
that the cubic equation (3) always solvable in . 
	 Since ⎜a⎜3 = ⎜b⎜3 = 3k for some k ∈ , it is clear that 
the solvability of the following two cubic equations is 
equivalent 
	
	 x3 + ax = b,       ⎜a⎜3x

3 + a*x = b*.	 (11) 
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	 Moreover, any solution of the first cubic equation 
is a solution of the second one and vice versa. On the 
other hand, the second cubic equation is suitable to apply 
Hensel’s lemma. Let us consider the following polynomial 
function ga,b(x) = ⎜a⎜3x

3 + a*x –b*. Let  be a solution of 
the linear congruent equation a*  ≡ b* (mod 3) (it always 
exists). Then we get that 

	 ga,b ( )  = ⎜a⎜3
3 + a*  – b* ≡ a*  – b* ≡ 0 (mod 3),

	 g'a,b ( )  = 3⎜a⎜3
2 + a* ≡ a* ≡ 0 (mod 3).

	 Then due to Hensel’s Lemma, there exists x ∈ 3 such 
that ga,b(x) = 0. Since x ≡    0 (mod 3), we have that x ∈ 

. This shows that the cubic equation (3) is solvable in  
whenever ⎜a⎜3 = ⎜b⎜3 > 1. 

	 I.2. Let ⎜b⎜3 = ⎜a⎜3 = 1. In this case, we want to show 
that the equation (3) is solvable in  if and only if a* ∈ 
[1]. 
	 Only if part: Let x ∈  be a solution of the cubic 
equation (3). Since ⎜b⎜3 = 1, we have that x3 + ax ≡ b  
0 (mod 3). This yields that x2 + a  0 (mod 3). We know 
that for any x ∈  one has that x2 ≡ 1 (mod 3). Then we 
get that 1 + a   0 (mod 3) or a   2 (mod 3). This means 
that a0 ≡ a ≡ 1 (mod 3) or a ∈ [1]. 
	 If part: Let a ∈ [1]. Let us consider the following 
polynomial function fa,b(x) = x3 + ax – b. Let  = 2b0. Then 
it is clear that 

	 fa,b(  ) = 8  + 2ab0 – b ≡ 8b0 + 2b0 – b0 ≡ 9b0 ≡ 0 (mod 3),

	 fa,b' (  ) = 12  + a ≡ a ≡ 1  0 (mod 3).

	 Then due to Hensel’s Lemma, there exists x ∈ 3 such 
that fa,b(x) = 0. Since x ≡  ≡ 2b0 (mod 3), we have that x ∈ .
	 I.3. Let ⎜b⎜3 < ⎜a⎜3 = 1. In this case, we want to show 
that the cubic equation (3) is solvable in  if and only if 
a* ∈ [2]. 
	 Only if part: Let x ∈  be a solution of the cubic 
equation (3). Since ⎜b⎜3 < 1, we have that x3 + ax ≡ b ≡ 
0 (mod 3). This yields that x2 + a ≡  0 (mod 3) or x2 ≡ –a 
(mod 3). We know that for any x ∈  one has that x2 ≡ 1 
(mod 3). We then get that  a ≡ –1 (mod 3). This means that 
a0 ≡ a ≡ 2 (mod 3) or a ∈ [2]. 
	 If part: Let a ∈  [2]. Let us again consider the same 
polynomial function fa,b(x) = x3 + ax – b. Let  = 1. Then it 
is clear that 

	 fa,b(  ) = 1 + a – b ≡ 1 + a0 ≡ 0 (mod 3),

	 fa,b' (  ) = 3 + a ≡ a ≡ 2  0 (mod 3)

Then due to Hensel’s Lemma, there exists x ∈ 3 such that 
fa,b(x) = 0. Since x ≡  ≡ 1 (mod 3), we have that x ∈ . 

	 I.4. Let ⎜a⎜3 = .  We shall separately study two cases: 

(i) ⎜a⎜3 =  and (ii) ⎜a⎜3 <  . 

	 I.4. (i). Let ⎜a⎜3 = . In this case, we want to show that 

the cubic equation (3) is solvable in  if and only if (a*,b*) 
∈  [1⎜1,1] ∪  [1⎜2,1] ∪ Δ where the set Δ is defined 
by (5). 

Since  ⎜a⎜3 = , one hast that  a = 3a*, where 
	
	 a* = a0 + 3a1 + 9a2 + …

Here, we have two options: a0 = 1 or a0 = 2.
 
	 Let a0 = 1. In this case, we especially want to show that 

cubic equation (3) is solvable in  if and only if (a*,b*) ∈ 
 [1⎜1,1] ∪  [1⎜2,1]. 

	 Only if part: Let x ∈  be a solution of (3). Particularly, 
we then get that 

	 x3 + ax ≡ b (mod 3)	 (12)

	 x3 + ax ≡ b (mod 9)	 (13)

	 Since a = 3a*, it follows from (1) that x ≡ b (mod 3). 
It means that x0 = b0. We know that x3 ≡  (mod 9) and ax 
≡ ab0 (mod 9). Therefore, we have that 

	 b ≡ x3 + ax ≡  + b0 (mod 9)	 (14) 

	 Due to Proposition 3, the congruent (14) holds true if 
(a*, b*) ∈ [1⎜1,1] ∪ [1⎜2,1].
	 If part. Let (a*, b*) ∈ [1⎜1,1] ∪ [1⎜2,1]. We 
consider the same polynomial function fa,b(x) = x3 + ax – b. 
Let  = b0 + 3(b0 – 1 + a1b0 – b2). It is clear that

	 3	≡  + 9 (b0 – 1 + a1b0 – b2) 

		  ≡  + 9(b0 – 1 + a1b0 – b2) (mod 27),

	 a  ≡ 3a0  + 9a1  ≡ 12b0 – 9 + 18a1b0 – 9b2 (mod 27).

Since  + 2 = 3b0 for any b0 ∈ {1,2}, we then obtain that

	 fa,b( )	 ≡	  + 9(b0 – 1) + 9a1b0 – 9b2 + 12b0 – 9 

		    	+ 18a1b0 – 9b2 – b0 – 3b1 – 9b2 (mod 27)

		  ≡	  + 9(b0 – 1) + 12b0 – 9 – b0 –3b1  	

		  ≡	27(b0 – 1) (mod 243)

	 f 'a,b( )	 =	3( 2 + a*) ≡ 0 (mod 3)

	 f 'a,b( )	 =	3( 2 + a*) ≡ 6 (mod 9)

	 So, due to Hensel’s Lemma, there exist x ∈ 3 such that 
fa,b(x) = 0. Since x ≡  ≡ b0 (mod 3), we have that x ∈ . 
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	 Let a0 = 2. In this case, we especially want to show 
that cubic equation (3) is solvable in  if and only if (a*,b*) 
∈ Δ where the set Δ is defined by (5). 
	 Only if part: Let x ∈  be a solution of the cubic 
equation (3). Let 

	 x ≡ x0 + 3x1 + 9x2 + 27x3 + 81x4 ≡ x0 + 3X1 (mod 243)
	 X1 = x1 + 3x2 + 9x3 + 27x4 = x1 + 3X2

	 X2 = x2 + 3x3 + 9x4 = x2 + 3X3

	 X3 = x3 + 3X4.

In this case we can get that 

	
	

Consequently, we obtain that 

	

	

We then get that 

x3 + ax – b ≡  + ax0 – b + 9x1(  + a0) + 27x2(  + a0) 
+ 27(x1a1 + x0 ) + 81(x1a2 + x2a1) + 81x3(  + a0) 
+ 162x0x1x2 (mod 243)

	 It is easy to check that for any b0 ∈ {1,2}, we have 
that  +a0 =  + 2 = 3b0. Therefore, we have that 

	 x3 + ax – b ≡	   + ab0 – b + 27b0x1 + 27(x1a1 + b0 )
		  +81b0x2 + 81(x1a2 + x2a1)
		  +162b0x1x2 (mod 243)	  (15)

	 Since x is a solution of the cubic equation (3), in 
particular, it follows that 

	 x3 + ax – b ≡ 0 (mod 3)	 (16)

	 x3 + ax – b ≡ 0 (mod 27)	 (17)

	 x3 + ax – b ≡ 0 (mod 81)	 (18)

	 x3 + ax – b ≡ 0 (mod 243)	 (19)

	 Since a = 3a*, it follows from (16) that x3 ≡ b (mod 
3) or x0 = b0. We then obtain from (15) and (17) that x3 + 
ax – b ≡  + ab0 – b ≡ 0 (mod 27). Due to Proposition 3, 
the last congruent holds true if (a*, b*) ∈  [2,i⎜1,2,i] 
∪ [2,2 – i⎜2,0,i].

In this case, we obtain from (18) that

	 x3 + ax – b	≡  + ab0 – b + 27x1b0 + 27(x1a1 + b0 ) 
		  ≡ 0 (mod 81)

and by dividing 27 and having  (mod 3) we get that 

	 	 (20) 

or (by multiplying b0 and having  (mod 3)) 

	 	 (21)

Then due to Proposition 3, this quadratic congruent 
equation has a solution if and only if (a*, b*) ∈ Δ. 
	 If part: Let (a*, b*) ∈ Δ. Let us consider the same 
polynomial function fa,b(x) = x3 + ax – b. Due to Corollary 
2, for ε = –b0 the last quadratic equation (21) has a solution  

1
 such that  

1
  1+a1b0 (mod 3). It is worth mentioning that 

1
 is also the solution of the quadratic congruent equation 

(20). 
	 Now, we choose 

2
 to be a solution of the following 

linear congruence 

	 (b0 + a1 – b0 1) 2
 

	

	

		  	 (22) 

	 Note that the linear congruent (22) always has a 
solution because of b0 1  b0 + a1 (mod 3). We then get 
from (22) that

	 (b0 + a1 + 2b0 1) 2 

	

	

(81b0+81a1+162b0 1) 2 ≡ b – ab0–  – 27(1+b0+a1) 1 – 27b0

 – 81a2 1 – 27( – 1) (mod 243)

	  + ab0 – b + 27b0 1 + 27(a1 1+ b0  + ) 
	 + 81b0 2 + 81 (a2 1 + a1 2) + 162b0 1 2

	 ≡  0 (mod 243)
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Let  = b0 + 3 1 + 9 2. We then have that 

	   fa,b( )	≡	  + ab0 – b + 27b0 1 + 81b0 2 

			   + 27( 1a1 + b0  + ) + 81( 1a2 + 2a1) 

			   + 162b0 1 2 (mod 243)

		  ≡	0 (mod 243)

	 f 'a,b( )	 =	3( 2 + a*) ≡ 0 (mod 3)

	 f 'a,b( )	 =	3( 2 + a*) ≡ 3(1 + 2) ≡ 0 (mod 9)

	 f 'a,b( )	 =	3( 2 + a*) ≡ 3  + 18b0 1 + 3a0 + 9a1

		  ≡	3(  + 2) + 18b0 1 + 9a1 (mod 27)

		  ≡	9b0+18b0 1+9a1 ≡ 9(b0+a1+b0 1) (mod 27)

		  ≡ ± 9 

	 So, due to Hensel’s Lemma, there exist x ∈ 3 such that 
fa,b(x) = 0. Since x ≡  ≡ b0 (mod 3), we have that x ∈ . 

I.4. (ii). Let . In this case, we want to show that 
the cubic equation (3) is solvable in  if and only if b* 
∈ [1,0] ∪ [2,2]. 
	 Only if part: Let x ∈  be a solution of the cubic 
equation (3). Since a ≡ 0 (mod 9), we have that b ≡ x3 
(mod 9). This yields that x ≡ b (mod 3) or x0 = b0. On 
the other hand, if x ≡ b0 (mod 3) then we obtain that x3 
≡ .  It means that . Then, due to 
Proposition 3, we have that b* ∈ [1,0] ∪ [2,2].  
	 If part. Let b* ∈ [1,0] ∪ [2,2].  Since , we 
have that a = 9a0 + 27a1 + … where a0, ai ∈ {0,1,2}. Let 
us consider the same polynomial function fa,b(x) = x3 + ax 
– b. We choose that   = b0 + 3(b2 – b0a0). In this case, we 
have that 

	 3 ≡  + 9(b2 – b0a0) (mod 27)
	 a  ≡ 9a0b0 (mod 27)
	  ( ) ≡  – b0 – 3b1 ≡ 0 (mod 27)
	  ( ) = 3 2 + a ≡ 0 (mod 3)
	  ( ) = 3 2 + a 

	 So, due Hensel’s Lemma, there exist x ∈ 3 such that 
fa,b (x) = 0. Since x ≡  ≡ b0 (mod 3), we have that x ∈ . 
	 Similarly, one can prove the cases 2 and 3. This 
completes the proof.
	 In the paper (Saburov & Ahmad 2015 (in press) we 
study the number of solutions of the cubic equations over 
3.
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