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Controlling the Blood Flow in the Stenosed Porous Artery with Magnetic Field
(Pengawalan Aliran Darah dalam Arteri Berliang yang Tersumbat dengan Medan Magnet)
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ABSTRACT

The unsteady blood flow in the stenosed porous artery subjected to a magnetic field was studied analytically. Oscillating 
pressure gradient and periodic body acceleration were imposed on the flow field. The effects of the magnetic field and 
the permeability of the stenosed artery on the blood velocity were studied. The results showed that the magnetic field 
affected the flow field significantly which can be beneficial for some practical problems.
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ABSTRAK

Aliran darah yang tidak stabil di dalam arteri  berliang tersumbat  yang dikenakan medan magnet dikaji secara beranalisis. 
Kecerunan tekanan berayun dan pecutan badan berkala telah dikenakan ke atas medan aliran. Kesan medan magnet 
dan arteri tersumbat pada halaju darah telah dikaji. Keputusan menunjukkan bahawa medan magnet mempengaruhi 
aliran dengan ketara yang bermanfaat untuk beberapa masalah sebenar.

Kata kunci: Aliran darah tak mantap; arteri stenosis; medan magnet; medium berliang

INTRODUCTION

The study of hemodynamics and hemorheology in 
constricted condition has recently gained the attention of 
many researchers. The formation of stenoses in arteries 
would alter the blood flow pattern in the circulatory system, 
thus causing numerous types of fatal cardiovascular. 
El-Shahded (2003) studied the pulsatile movement of 
blood flow through a permeable stenosed artery due to 
magnetic field. Makinde (2005) used analytical approach 
of perturbation method in solving the mathematical model 
describing the fluid dynamics of collapsible tube. It was 
observed that the model was appropriate to simulate wind 
tunnel tests on rheological phenomenon in physiological 
systems. Mustapha et al. (2010) investigated the blood flow 
through a couple of stenoses on an irregular surface. They 
showed that the pressure drop across the cosine stenosis 
exceeded the irregular one, which was consistent to the 
previous studies.
 The use of magnetic field is common in treating 
stenosis. Sharma et al. (2015) examined the effect of 
magnetic field on the rheological models of blood. They 
highlighted that magnetic field could be used to control the 
blood flow, which was beneficial for certain hypertension 
cases. Tashtoush and Magableh (2008) studied the non-
isothermal blood flow through multi-stenosed arteries 
subjected to magnetic field. Finite difference method was 
applied to solve the governing equations. Their results 
showed that the collision of particles within the arteries 
would increase the blood temperature and alter the blood 
flow pattern. Varshney et al. (2010) studied the blood flow 
through the stenosed artery in the presence of magnetic 

field. They found that the presence of multiple stenoses and 
magnetic field would affect the flow characteristics. Prakash 
and Makinde (2011) investigated the effect of radioactive 
heat absorption with the magnetic field resistance on the 
stenosed blood flow under the combination of pressure 
gradient and applied magnetic field. They reported that 
for patients undergoing thermal radiation therapy, the 
resistance to blood flow due to magnetic field and stenosis 
was reduced by increasing thermal radiation absorption. 
Singh et al. (2003) reported that the blood velocity, the 
flow rate and the shear stress would drop in the presence 
of magnetic field. The blood was modelled as the Herschel-
Bulkley fluid. Xenos and Tzirtzilakis (2013) studied the 
stenosed blood flow in the presence of magnetic field as 
well. They showed that the velocity, the pressure and the 
skin friction were significantly affected upon applying the 
magnetic field. Bhatnagar and Shrivastav (2014) studied 
the blood flow in multiple stenosed arteries. Slip condition 
was considered and the flow field was subjected to a 
varying magnetic field. Bose and Banerjee (2015) reviewed 
the application of magnetic drug targeting (MDT) in treating 
stenosed aortic bifurcation. It is important to consider both 
ferrohydrodynamics (FHD) and magnetohydrodynamics 
(MHD) principles when the blood is modelled as a 
biomagnetic fluid. Shit and Majee (2015) studied the 
blood flow in an overlapping stenosed artery subjected to 
a magnetic field. The vibration of the whole body as well 
as the effect of heat were considered as well. Sharma et al. 
(2004) found that external magnetic field could decrease 
the velocities of blood and magnetic particles. Prakash et 
al. (2015) investigated the steady blood flow through the 
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uniform cross-section blood vessels (modelled as Bigham 
plastic fluid) in stenosed arteries. It was observed that the 
stenoses size decreases the flow rate and increases the 
wall shear stress as well as resistance to flow. Based on 
the research performed by Siddiqui et al. (2015), wall slip 
would decrease the effective viscosity, the blood velocity 
and increase the flow resistance. Meanwhile, the shear 
wall stress decreased as the flow rate increased. Shah et 
al. (2016) showed that the MHD model yielded in different 
results if the fractional derivatives were employed. Majee 
and Shit (2017) investigated the unsteady non-isothermal 
blood flow through constricted arteries subjected to 
magnetic field. They highlighted that the artery wall would 
remain in the proper condition if the magnetic field strength 
was below 8T (beneficial for hyperthermic treatment).
 The investigation of magnetic field within the porous 
medium is also important. Tanwar et al. (2014) investigated 
the effect of porous medium on blood flow in a stenosed 
artery subjected to a transverse magnetic field. As the 
permeability of the porous medium increased, the velocity 
decreased and the volumetric flow rate increased. Hatami 
et al. (2014) studied the non-Newtonian flow through a 
porous medium (magnetic hollow vessel) analytically and 
numerically. They reported that the velocity decreased as 
the MHD parameter was increased. Also due to the increase 
of the thermophoresis parameter (Nt), the temperature 
rising rate would be increased as well. Akbarzadeh (2016) 
showed that by lowering the Womersley parameter, the 
flow was dominated by viscous forces and the parabolic 
velocity profiles were obtained. Ullah et al. (2016) studied 
the velocity profile of the squeezed incompressible viscous 
flow through a porous medium under the influence of 
uniform transverse magnetic field. It was observed that 
both imposed magnetic field and electro conductivity 
would affect the fluid velocity. Bhatti and Abbas (2016) 
investigated the combined effects of slip and magnetic field 
on the peristaltic blood flow (modelled as Jeffrey fluid) 
through non-uniform porous channel. It was observed that 
the magnitude of the velocity is opposite near the walls 
due to slipping effects whereas similar behaviour has been 
observed for the magnetic field. Makinde et al. (2017) 
used Buongiorno’s model in four different channel of the 
magneto-hemodynamic laminar flow namely, convergent, 
divergent, locally constricted and wavy channels. They 
showed that both thermal and Richardson numbers 
have opposite behaviour for skin friction, heat and mass 
transfer in each channel. Based on study conducted by 
Zaman et al. (2017) higher permeability could increase 
the blood flow rate (hence velocity) and the shear stress. 
They have considered the overlapping porous-saturated 
constricted artery subjected to body acceleration. The 
pulsatile blood (modelled as Herschel-Bulkley fluid) flow 
through a bifurcated artery was studied as well. The effects 
of periodic body acceleration and magnetic field were 
investigated (Ponalagusamy & Priyadhashini 2017).
 In the current work, we extended the study of 
Akbarzadeh (2016) by controlling the blood flow in 
the stenosed porous artery via a magnetic field. The 

flow is treated as unsteady, laminar and incompressible. 
The analytical solution shall be presented by using the 
perturbation method and power series. 

FORMULATION OF THE PROBLEM

The unsteady pulsatile laminar flow of incompressible 
Newtonian blood within a stenosed artery subjected to 
a magnetic field is considered (Figure 1). The stenosis is 
axially non-symmetric, however it is radially symmetric. 
The axial distance z and the height of its growth with the 
vessel radius (Siddiqui et al. 2015):

  (1)

where ( ) is the radius of the artery in the stenosed 
region; 0 is the radius of the normal artery; 0 is the 
length of the stenosis;  is the region of the stenosis; 
and  where  is the maximum height of 
the stenosis at  = (  + 0)/m

m/(m–1) such that s/ 0 < 1. 
The blood is flowing in the z-direction through a fully 
porous vessel (or artery) of radius ( ) with an axial 
velocity of u(z,r,t), i.e. the flow is assumed to be stable 
and axisymmetric with no radial and swirl components of 
velocity. It is supposed that, there is no-slip condition (u 
= 0) on the outer wall (r = R). The problem involves the 
solution of both the Maxwell’s relations for magnetic field 
and Navier–Stokes equations describing the blood flow.

The Maxwell equations are:

 ∇⋅  = 0, ∇ ×  = μ0 , ∇ ×  = – , (2)

where  is the magnetic flux intensity; μ0 is the magnetic 
permeability;  is the electric field intensity;  is the time; 
and  is the current density given by,

  = σ (  +  × ) (3) 

where σ is the electrical conductivity and  = (0, 0, ) 
is the velocity distribution. For small magnetic Reynolds 
number, the linearized magneto-hydrodynamic force  ×  
can be expressed as

   ×  = σ (  +  × ) ×  = σ   (4)

where  (z, r, t) represents the axial velocity of the blood 
and B0 is the externally applied constant magnetic field. 
 Based on the above considerations the equation of 
blood motion can be expressed as (Akbarzadeh 2016): 

 
   

(5)
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where  is the pressure;  is the axial direction;  is the 
body acceleration; ρ is the blood density; μ is the blood 
dynamic viscosity; σ  is the magnetic field strength; and 
K is the permeability of porous medium. 
 The blood flow was generated by the pressure gradient  

 due to the pumping action of the heart (Akbarzadeh 
2016; Siddiqui et al. 2015):

  (6) 

where A0 is the steady-state part of the pressure gradient; 
A1 is the amplitude of the pressure fluctuation giving rise 
to the systolic and diastolic pressures;  is the heart 
pressure frequency; and   is the pulse rate frequency.
 The body acceleration  can be expressed in its 
harmonic form (Akbarzadeh 2016; Siddiqui et al. 2015):

  (7)

where Ag is the amplitude of the acceleration; g = 2π g 
is the frequency; g is the pulse rate frequency; and ϕ is 
the lead angle of the body acceleration with respect to the 
pressure gradient. Note that the effect of gravity in radial 
direction was neglected.

The boundary conditions on the velocity field are:

  = 0,    at     = ( ), (8)

   is finite,  at    = 0. (9) 

 The non-dimensional governing equations can be 
obtained by introducing the following dimensionless 
variables:

 (10) 

 By using the above dimensionless variables, the 
following dimensionless problem can be obtained:

  (11) 

subjected to the boundary conditions at any time t 

  = 0,   at  r = R(z), (12)

  is finite,  at  r = 0 (13) 

where α2 = , α is the Womersley frequency parameter 
Ha =  is the Hartmann number,   is the porosity 
parameter and f (t) = 4[(1 + γ cos t) + B cos (ωt + ϕ)]. 

FIGURE 1. Geometry of stenosis

APPROXIMATE ANALYTICAL SOLUTIONS                                    
IN POWER SERIES FORMS

The main contribution of the current work is the 
development of the analytical solution of (12). Note 
that (12) could not be solved by applying merely the 
perturbation method for the expression of the blood 
velocity. Therefore, an approximate analytical solution 
is given in this section via combining the perturbation 
method and the power series. Assuming that the Womersley 
parameter is small (α2<< 1), where blood flows through 
small blood vessels such as arterioles and capillaries, its 
axial velocity component can be expressed in the following 
form:

 u(z, r, t) = u0(r, t) + α2u1(r, t) + … (14) 

By substituting (14) into (11) – (13) we obtain,

 

  – Q(u0 + α2u1), (15)

 u0 = u1 = 0,   at  r = R(z), (16)

 u0, u1  are finite  at  r = 0, (17) 

where Q = Ha2 + 

Simplifying (15),

  – (Qu0 – f (t)) = 0, (18) 

and

  – Qu1. (19)
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By considering (18) and manipulating the function 

 Qu0 – f (t) = W0(z, r, t), (20) 

both sides of (20) can be differentiated with respect to r, 
yields:

  (21) 

Substituting (20) and (21) into (18), we obtain 

  – QrW0 = 0. (22)

SOLUTION OF u0 (z, r, t) IN THE FORM OF POWER SERIES

Assuming that the solution of (22) can be expressed in the 
form of power series:

 W0 =  Cn(z, t)rn. (23) 

By substituting (23) into (22), the general terms for  C2n+1 
and C2n+2 can be obtained respectively as,

 C1 = 0 (24)

 C2n+1 = (2Q)2n   ,  C1 = 0,   n = 0,1,2,…, (25)

 C2n+2 =    n = 0,1,2,…, (26) 

Furthermore, from (24) - (26), (23) can be rewritten as:

   
 W0(z, r, t) = C0  +   C2n+2r

2n+2 

  = C0 + C0    (27) 

Eq. (29) can be simplified further as,

 W0(z, r, t) = C0(z, t) l0( ), (28) 

where l0 is the modified Bessel function of order zero. 
Using (22), the solution u0 can be expressed as

 u0 =  (29) 

 Applying the boundary condition u0 = 0 at r = R(z) we 
obtain

 C0(z, t) = –  (30) 

 Therefore, the power series solution of u0 can be 
expressed as 

 u0 = 

 (31)

SOLUTION OF u1(z, r, t) IN POWER SERIES FORMS

Substituting (31) into (20) and simplify to obtain:

  (32) 

 

  

where

 
 g(z,t) =  (33) 

Considering the solution of u1 as a power series in the form 

 u1 =  Dn(z, t)rn, (34) 

and substituting (34) into (32), yields,

 
 (2k + 2)2D2k+2 – QD2k =  k = 1,2,3,… 

 (35) 

with the following recursive relation as:

 D2 =  [g(z, t) + QD0], (36)

 
 n = 1,2,3…

  (37)

  (38) 

The power series solution of u1 is expressed as:

 

  (39) 
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Using the boundary condition (16), we obtain the value as

  (40) 

The series solution is

 

 
 

  (41) 

 
 Finally, the perturbed power series solution for the 
velocity profile is: 

 

 

 

  (42) 

ANALYTICAL SOLUTION FOR LIMITING CASE

In this section, the analytical perturbation method was 
used to solve a special case of the model expressed in 
(15), by neglecting the magnetic field and the porosity of 
the medium (Q = 0):

 α2 =  (43) 

Simplifying (43) results:

  (44) 

and

  (45) 

 By integrating (44) and (45), using the boundary 
conditions, i.e. (12) and (13) we obtain:

 u0(z, r, t) = –  f (t) [r2 – R(z)2], (46)

 u1(z, r, t) = –  [r4 – 4r2R(z)2 + 3R(z)4] (47)

Finally, the velocity profile will be as follows:
 

u(z, r, t) = –  f (t) [r2 – R(z)2] – 

 α2  (48)

RESULTS AND DISCUSSION

In order to validate the current model, the results obtained 
by using the power series method and the perturbation 
method are compared in terms of physiological parameters 
selected based on Siddiqui et al. (2015). Figure 2 compares 
the current results with those obtained from (30) Siddiqui 
et al. (2015). Based on the result obtained, the blood 
motion equations in the absence of magnetic field and 
permeability are satisfied. Thus, the given solution was 
validated successfully. The blood velocity (hence flow rate) 
was higher in the absence of magnetic field. 
 Figures 3 - 4 show the time histories of the velocity 
profiles. Following Bose and Banerje (2015), the current 

FIGURE 2. Comparison of velocity profile for blood  
distribution in the stenosed artery
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dimensionless parameters were set as: α = 0.2, R1 = 0.8,        

G = 2,   A = 0.05, B = 0.065,  ω = 0.86, 

ϕ = 0.625, m = 10. Figure 3 illustrates the influence of 
magnetic field on blood velocity. Apparently, the blood 
velocity decreased as the magnetic parameter in the 
boundary layer region of the artery increased (due to the 
Lorentz force). This force would decelerate the blood flow 
within boundary layer region. 
 Figure 4 illustrates the effects of permeability parameter 
K1 on blood velocity with/without magnetic field. It is 
found from Figure 4 that blood velocity increases on 
increasing permeability parameter K1 in the boundary 
layer region artery. This is because that an increase in K1 
results that there is decrease in the resistance of porous in 
the stenosed artery which tends to accelerate blood flow 
for magnetic field effects. Figure 5 shows the velocity 
profiles at different radial positions, r. Seemingly the blood 
velocity decreased as the radial distance increased. The 
flow resistance was lesser in bigger artery, thus decreasing 
the blood velocity. 

CONCLUSION

In this research, we formulated a mathematical model 
describing the blood flow through stenosed porous artery 
with the application of magnetic field. The governing 
equations for both velocity are solved analytically and 
simulated on MATHCAD software. We found that the 
blood velocity decreases with an increasing of magnetic 

field, while increases with an increasing of permeability 
parameter. Besides the velocity profile also decreases as 
the size of radius increases.

FIGURE 3. Velocity distribution of blood in the stenosed artery 
with/without magnetic effects for different values of Hartmann 

number Ha (when K1= 0.2, r = 0.2, z = 1)

FIGURE 4. Velocity distribution of blood in the stenosed 
artery with/without magnetic effects for different values of 

permeability parameter K1 (when Ha = 1, r = 0.2, z = 1)

FIGURE 5. Velocity distribution of blood in the stenosed artery 
with/without magnetic effects with different value of radius 

(when Ha = 1, r = 0.2, z = 1)
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