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Next Generation Sequencing-Data Analysis for Cellulose- and 
Xylan-Degrading Enzymes from POME Metagenome

(Analisis Data-Penjujukan Generasi Seterusnya bagi Enzim Selulosa 
dan Xilan Mendegradasi daripada Metagenom POME) 

FARAH FADWA BENBELGACEM, MOHD NOOR MAT ISA, MUHAMMAD ALFATIH MUDDATHIR ABDELRAHIM, AFIDALINA 
TUMIAN, OUALID ABDELKADER BELLAG, ADIBAH PARMAN, IBRAHIM ALI NOORBATCHA & HAMZAH MOHD SALLEH*

ABSTRACT

Metagenomic DNA library from palm oil mill effluent (POME) was constructed and subjected to high-throughput screening 
to find genes encoding cellulose- and xylan-degrading enzymes. DNA of 30 positive fosmid clones were sequenced with next 
generation sequencing technology and the raw data (short insert-paired) was analyzed with bioinformatic tools. First, 
the quality of 64,821,599 reverse and forward sequences of 101 bp length raw data was tested using Fastqc and SOLEXA. 
Then, raw data filtering was carried out by trimming low quality values and short reads and the vector sequences were 
removed and again the output was checked and the trimming was repeated until a high quality read sets was obtained. 
The second step was the de novo assembly of sequences to reconstruct 2900 contigs following de Bruijn graph algorithm. 
Pre-assembled contigs were arranged in order, the distances between contigs were identified and oriented with SSPACE, 
where 2139 scaffolds have been reconstructed. 16,386 genes have been identified after gene prediction using Prodigal 
and putative ID assignment with Blastp vs NR protein. The acceptable strategy to handle metagenomic NGS-data in order 
to detect known and potentially unknown genes is presented and we showed the computational efficiency of de Bruijn 
graph algorithm of de novo assembly to 21 bioprospect genes encoding cellulose-degrading enzymes and 6 genes 
encoding xylan-degrading enzymes of 30.3% to 100% identity percentage. 

Keywords: de Bruijn; de novo assembly; metagenomics; scaffold; SSPACE 

ABSTRAK 

Sebuah pangkalan data yang menyimpan DNA metagenom daripada efluen kilang minyak kelapa sawit telah dibina dan 
disaring dengan menggunakan kaedah penyaringan berskala besar untuk mencari enzim selulosa dan xilan. DNA daripada 
fosmid berklon positif telah disusun dengan menggunakan teknologi penjujukan berskala besar dan data mentah (dalam 
susunan pendek berpasangan) telah dianalisis dengan kaedah bioinformatik. Pertama, kualiti susunan 64,821,599 
balikan dan ke depan sebanyak 101 bp panjang data mentah telah diuji menggunakan Fastqc dan SOLEXA. Kemudian, 
penyaringan data mentah dilakukan dengan memotong susunan yang berkualiti rendah dan pendek. Malah, vektor juga 
telah dikeluarkan dan susunan output telah diperiksa dan ditrim berulang kali sehingga set bacaan berkualiti tinggi 
diperoleh. Langkah kedua adalah himpunan de novo iaitu untuk menyusun semula 2900 contigs mengikut algoritma  
graf de Bruijn. Contigs awal sebelum himpunan telah diatur mengikut susunan, jarak antara contigs telah  dikenal pasti 
berorientasikan SSPACE dengan 2139 perancah telah dibina. 16,386 gen telah dikenal pasti selepas kaedah peramalan gen 
menggunakan Prodigal dan penugasan ID putatif dengan Blastp vs protein NR. Strategi yang betul dalam mengendalikan 
data NGS-metagenom untuk mengesan gen-gen yang diketahui dan juga yang berpotensi tetapi masih belum diketahui 
telah ditunjukkan. Dalam kajian ini, kami  menunjukkan kecekapan pengiraan komputer berdasarkan algoritma graf 
himpunan  de Bruijn de novo kepada bioprospek 21 gen yang mengekodkan enzim selulosa dan 6 gen yang mengekod 
enzim xilan daripada 30.3% kepada 100% peratusan identiti yang serupa.

Kata kunci: de Bruijn; himpunan de novo; metagenom; perancah; SSPACE 

INTRODUCTION

Metagenomic is a new strategy which has been invented 
to bioprospect untapped biocatalysts from unculturable 
microbiota by skipping the classic ways of laboratory 
cultivation (Kumar et al. 2015). For further improvement 
of biocatalysts discovery, high-throughput screening (HTS) 
tools are combined with metagenomic approach. Microtiter 
screening is one of the HTS methods which is widely 

used to screen huge libraries in a short time (Mewis et al. 
2013). In HTS, sensitive fluorogenic substrates are used to 
detect enzymes with the desired activity (Armstrong et 
al. 2015; Taupp et al. 2011). Finding the gene encoding 
the biocatalyst is a crucial part in the work flow and to get 
the full sequence of the gene, DNA sequencing needs to 
be carried out. Nowadays, Next Generation Sequencing 
(NGS) is adopted in metagenomic approaches due to its 
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capacity to merge huge data by covering big library size 
in one run and due to its high sensitivity and accuracy 
(Henson et al. 2012). NGS strategy overcomes the problem 
of the high cost and longtime of genome sequencing by 
Sanger sequencing approach; NGS allows for the shearing 
of the genome into sequences and re-assemble them after 
sequencing (Li et al. 2012). 
 Illumina is one of the second generation sequencing 
technologies which is based on synthesis principles and 
requires bridge amplification. In the amplification step, 
adaptor modified DNA strands hybridize to oligonucleotide 
anchor and the sequencing is performed by reversible dye 
terminator. Reads length varies between 50 and 250 bp and 
up to 3 billion reads as the output. The main advantage of 
Illumina technology is the high sequence yield while the 
two major disadvantages of this technology is the need 
of high DNA concentration and the high cost (Minakshi 
et al. 2014). The NGS-data analysis may be a dilemma 
if the wrong analysis strategy is followed. The data size 
should be considered during data-analysis work flow, 
where software to be used should be able to recover all 
the data. As Illumina sequencing strategy is based on the 
fragmentation of DNA to short reads before sequencing, an 
assembly step is compulsory to overlap the genome. 
 The assembly method depends on the type of sequenced 
DNA, where genomic DNA or transcriptome cDNA is not 
assembled in the same manner. The technology is able to 
handle DNA that is known or otherwise; the assembly of 
known DNA is based on homology alignment of reads with 
the DNA template termed reference genome assembly while 
the unknown method of assembly is called the de novo 
assembly where no homology information is available. In 
the current research, metagenomic DNA was isolated from 
palm oil mill effluent and fosmid DNA library was created 
and the DNA library was screened with cellulose and xylan 
analog substrates. High rated fosmids clones were isolated 
and sequenced with Illumina Hiseq. The flow-chart of 
NGS-raw data analysis starts with the pre-processing step 
to improve data quality and as the metagenomic DNA is 
a mixture of culturable and unculturable microbes, there 
are no reference data to be used as reference homology 
data for analysis. The novel strategy of de novo assembly 
overcomes this problem and makes the data analysis of 
unknown genomes possible. de Bruijn graph (DBG) was 
chosen instead of overlap-layout-consensus (OLC) due to its 
capacity to process massive amounts of NGS data and the 
fact that it involves breaking reads into even shorter k-mers. 
Due to the lack of information and protocols that clearly 
presents NGS-data analysis of functional metagenomics 
approach for the detection of special activities, this article 
aims to clarify and simplify the needed workflow. 

MATERIALS AND METHODS 

MATERIALS

The NGS data is obtained from metagenomic DNA library 
constructed from palm oil mill effluent (POME) microbiota 

(FELDA Mempaga Mill, Bentong, Pahang, Malaysia). 
The DNA vector was pCC1FOS fosmid and the bacterial 
strain was E. coli EPI300T1R (Cat. No. CCFOS110 
from Epicentre). The fosmid DNA was extracted using 
FosmidMAX™ DNA Purification Kit (Cat. No. FMAX046 
from Epicentre). Fosmids were sequenced with Illumina 
Hiseq 2000 technology at Malaysia Genome Institute 
(MGI).

METAGENOMIC DNA LIBRARY CONSTRUCTION AND           
HIGH-THROUGHPUT SCREENING

Metagenomic DNA library was constructed by shearing  
the POME metagenome after extraction to sequences of 
35-45 kb size range and ligated to pCC1FOS fosmid and 
transfected to EPI300T1R with phage system. For this 
purpose, CopyControl™ Fosmid Library Production Kit 
with pCC1FOS™ Vector (Epicentre) was used following 
the manufacturer’s instructions. The library was screened 
with three fluorogenic substrates: methylumbelliferyl-
ß-D-glucopyranoside (MUGlc), methylumbelliferyl-ß-
D-cellobioside (MUC) and chlorocoumarin-xylobioside 
(CCX) using a fluorescence microplate reader (Zerbino & 
Birney 2008). The 30 positives clones identified with the 
HTS were cultured in Luria Bertani (LB) media overnight 
with autoinduction solution and the fosmids were isolated 
with FosmidMAX™ DNA Purification Kit following the 
manufacturer’s instructions. Thirty isolated fosmids were 
sequenced with Hiseq2000 strategy. The raw data of the 
sequencing is in fastq format and it was divided into 16 
files of reverse and 16 files of forward sequences, each 
file containing 4,000,000 sequences of 101 bp length plus 
one the 17th file of forward and 17th file of reverse with 
821,599 sequences of 101 bp length. 

NGS-DATA ANALYSIS PRE-PROCESSING

The workflow of NGS-data analysis is presented in Figure 
1. In the first step of pre-processing, the raw quality 
was checked and the reads were trimmed accordingly. 
Quality control was done in both Command Line Interface 
(CLI) and Graphic User Interface (GUI). In GUI, FastQC 
(Version 0.11.5 released) was used; it is a tool provided 
by Babraham Institute which makes the quality control of 
high-throughput sequencing pipelines an easy matter. In 
CLI, SolexaQA was used (Boetzer et al. 2011). The Illumina 
sequence files were uncompressed first using the command: 

 gunzip R1.fq.gz 

 gunzip R2.fq.gz

Each fastq file reads were counted in TOTAL READS with 
the command:

find R1.fq -exec grep -c -H “@HWI-“ 
{} \; >> TOTAL_READS 

find R2.fq -exec grep -c -H “@HWI-“ 
{} \; >> TOTAL_READS
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 In SolexaQA, DynamicTrim command was used to 
trim the reads basing on quality values Qphred, sequences 
with Qphred less than 20 were trimmed with the command:

 SolexaQA++ dynamictrim -h 20 R1.fq 

 SolexaQA++ dynamictrim -h 20 R2.fq 

 LengthSort command was used to trim the reads based 
on sequence length by removing sequences shorter than 
50 bp with the command:

SolexaQA++ lengthsort -l 50 R1.fq.
trimmed

SolexaQA++ lengthsort -l 50 R2.fq.
trimmed

 
 Reads of TOTAL HIGH QUALITY READS of Qphred more 
than 20 and sequences larger than 50 bp ware counted with 
the command:

find R1.fq.trimmed.single -exec grep 
-c -H “@HWI-“ {} \; >> TOTAL_HIGH_
QUALITY_READS

find R2.fq.trimmed.single -exec grep 
-c -H “@HWI-“ {} \; >> TOTAL_HIGH_
QUALITY_READS

 Bowtie2 was used to filter pCC1FOS sequences and 
the phiX spike used in Illumina sequencer as positive 
control with the command:

Bowtie2 -x ../bowtie_index/phix-174 
-x ../bowtie2_index/pcc1fos R1.fq.
trimmed.single –un R1.cleaned.fq 

Bowtie2 -x ../bowtie_index/phix-174 
-x ../bowtie2_index/pcc1fos R2.fq.
trimmed.single –un R2.cleaned.fq

 The reads of cleaned fastq files were counted and got 
into TOTAL CLEAN READS file with the command:

find R1.cleaned.fq -exec grep -c -H 
“@HWI-“ {} \; >>

TOTAL_CLEAN_READS

find R2.cleaned.fq -exec grep -c -H 
“@HWI-“ {} \; >>

TOTAL_CLEAN_READS

 The cleaned sequences are paired or singletons, the 
paired-end sequences were then shuffled and the singletons 
reads were combined into a file using the followed two 
commands:

select_paired_fq.pl R1.cleaned.fq 
R2.cleaned.fq R1.PE.fq R2.PE.fq

shuffleSequences_fastq.pl R1.PE.fq 
R2.PE.fq reads.PE.shuffled.fq 

cat R1.PE.fq.single R2.PE.fq.single 
> reads.SG.fq

DE NOVO GENOME ASSEMBLY AND SCAFFOLDING

The second step is the de novo assembly of DNA sequences 
using Velvet (Hyatt et al. 2010). Velvet is a two step-
process, first Velveth is used to prepare reads for Velvetg 
and the latter is to assemble the reads into contigs. 

FIGURE 1. NGS-Data analysis workflow of 30 recombinant fosmid DNA. Pre-processing, 
de novo assembly and sequence analysis are the main steps of the presented work 

pipeline. In bold are the bioinformatic tools used in this pipeline
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 The Velvet program and all available options were 
first called up by simply typing:

 velveth
 velvetg

 The VelvetOptimiser.pl script was used to optimize  
the Velvet parameters by finding automatically the optimal 
k-mer within the range 61-85 using the command:

VelvetOptimiser.pl -s 61 -e 85 -o 
‘-ins_length 500 -| ins_lentgh_sd 
100’ -t 2 -a -f ‘-fastq -shortPaired 
\ reads.PE.shuffled.fq -short reads.
SG.fq’ 

where -s is the starting hash value, -e is the end hash 
value, -o is an extra Velveth options to pass through, -t is 
the maximum number of simultaneous Velvet  instances 
to run, -a is to turn on Velvet’s read tracking and amos file 
output and -f is the file section on the Velvet command line. 
 The optimal k-mer was 79 and the command used to 
run Velveth was: 

velveth auto_79 79 -fastq -shortPaired  
reads.PE.shuffled.fq -short reads.
SG.fq

To run the Velvetg the following command was used:

 velvetg auto_79 -exp_cov auto

 The orientation and arrangement of contigs or what 
is called scaffolding was performed using SSAKE-based 
Scaffolding of Pre-Assembled Contigs after Extension 
(SSPACE) (Li et al. 2012). The command used for 
scaffolding is:

SSPACE_Basic.pl -l libraries.txt -s 
contigs.fa -x 0 -m 32 -o 20 -t 0 -k 
5 -a 0.70 -n 15 -p 0 -v 0 -z 0 -g 0 
-T 20 -b ref_genome.fa

where -l is library file containing two paired read files 
with insert size, error and orientation. -s is FASTA file 
containing contig sequences used for extension. Inserted 
paired reads are mapped to extended and non-extended 
contigs. -x indicates whether to extend the contigs of 
-s using paired reads in -l (-x 1=extension, -x 0=no 
extension, default -x 0). -m is minimum number of 
overlapping bases with the seed/contig during overhang 
consensus build up (default -m 32). -o is minimum 
number of reads needed to call a base during an extension 
(default -o 20). -t is to trim up to -t base(s) on the contig 
end when all possibilities have been exhausted for an 
extension (default -t 0). -k is minimum number of links 
(read pairs) to compute scaffold (default -k 5). -a is 
maximum link ratio between two best contig pairs. Higher 
values lead to least accurate scaffolding (default -a 0.7). 
-n is minimum overlap required between contigs to merge 

adjacent contigs in a scaffold (default -n 15). -p is to make 
.dot file for visualisation (-p 1=yes, -p 0=no, default -p 
0). -v is runs in verbose mode (-v 1=yes, -v 0=no, default 
-v 0). -z is minimum contig length used for scaffolding, 
it filters out contigs below this value (default -z 0). -g is 
maximum number of allowed gaps during mapping with 
Bowtie, it corresponds to the -v option in Bowtie and 
higher number of allowed gaps can lead to least accurate 
scaffolding (default -g 0). -T is to specify the number of 
threads in Bowtie, it corresponds to the -p/--threads option 
in Bowtie (default -T 1). -b is base name for output files 
(default -b standard_output).

BACTERIAL GENE PREDICTION AND ANNOTATION

The output of SSPACE was used in PROkaryotic DynamIc 
programming Gene finding ALgorithm (PRODIGAL) to 
identify codon DNA sequences CDSs (Minakshi et al. 
2014). The genes prediction was carried out with the 
command:

prodigal -a predictedGenes.faa -d 
predictedGenes.ffn -f gff -I ref_
genome.fa -o predictedGenes.gff

where -a is to write protein translations to the selected file, 
-d is to write nucleotide sequences of genes to the selected 
file, -f is to select output format (gbk, gff or sco), -i is 
to specify FASTA/Genbank input file and -o is to specify 
output file. 
 The genes annotation process was carried out using 
the BLAST software against NCBI’s non-redundant database. 
The first step consists on the creation of data base with the 
command:

Makeblastdb -in BLAST_db.ffn -dbtype 
nucl 

The BLAST then was run with the command:

blastp -db BLAST_db.ffn -query 
predictedGenes.ffn -out \

blastpOutput.out -outfmt 0 -num_
threads 20 

where the db is the BLAST data base, query is all genes file 
name, out is the output file name, outfmt is the alignment 
view options, 0 = pairwise and num_threads are number 
of threads (CPUs) to use in blast search. 
 The output of the BLASTp result was given in pairwise 
alignment format blastpOutput.out. The output was 
converted into an easier and more readable tabular format 
with the command:

Onehitperquery_bpSearchIO+Strand.
pl blastpOutput.out \ blastpOutput.
parsed 

 The BLAST results and the predicted GFF into an 
annotated file that contains information from both with:



  2955

tabfile_creator_from_gff_and_
blastparsed.sh 

RESULTS AND DISCUSSION

PRE-PROCESSING STEP

Before starting the main analysis, a pre-processing step 
is extremely important to check the quality of the reads 

with SolexaQA or FastQC, reads quality statistics were 
represented and graphically visualised. Figure 2 is an 
example of how the FastQC report is given and in Figure 
3, two different results of per base sequence quality 
where one is failed quality (A) and one is pass (B). Poor 
quality bases were removed with DynamicTrim based 
on BWA trimming algorithm, all basess with Qphred<20 
were trimmed and the LengthSort algorithm was used to 
remove sequences less than 50 bp (Cox et al. 2010). At 

FIGURE 2. Example of one of the FastQC reports of per base sequence quality, k-mer content, per sequence quality score, 
sequence length distribution, per sequence GC content and per base sequence content



2956 

the end of this step, high quality reads were ready for 
downstream process.

DE NOVO ASSEMBLY

In parallel with sequencing technologies evolution, 
algorithms for genomes and transcriptomes assembly are 
being developed. The NGS-data is different from Sanger 
sequencing data; it is short DNA sequences instead of large 
DNA and it is characterized by the high coverage as well. 
These advantages impose difficulty to analyze this huge 
data where millions of reads need to be pieced together 
to re-construct the genome again, in a process called de 
novo assembly. As de novo assembly is different from 
reference genome assembly where the data is compared 
to known data base, algorithms have been developed 

to assemble the genome. The first strategy of de novo 
assembly was based on the overlap-layout-consensus as 
Atlas and Celera. This algorithm represents each sequence 
as a node (N) and when an overlap is detected, the 
algorithm represents it as an arc between the two nodes. 
Euler assembler is another algorithm which is based on 
de Bruijn graph (DBG). In this latter algorithm, instead 
of arranging data on reads it is organized on k-mers (k 
is number of nucleotides). Velvet the assembler used in 
the presented work is also based on DBG where Zerbino 
and Birney (2008) have manipulated the algorithm to 
eliminate errors and resolve repeats issue imposed in 
previous assemblers. The k-mer 79 was given by Velvet 
optimizer to our data. 2900 contigs have been constructed. 
These contigs were the input of SSPACE algorithm use to 

  (A) (B) 
 

FIGURE 3. Examples of one failed per base sequence quality (A) 
and one pass per base sequence quality (B)

FIGURE 4. Output of scaffolding step with SSPACE. An example of one of the scaffolds with 2,838,209 bp
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locate and orient contigs. SSPACE is a powerful tool to 
scaffold huge data in a short time. 2139 scaffolds have 
been constructed in our work. An example of the first 
scaffold found was 2,838,209 bp is shown in Figure 4.

SEQUENCE ANALYSIS 

After scaffolding the CDSs finding is possible with 
PRODIGAL. This program is designed to identify 
microbial genes in high sensitivity and avoiding false 

FIGURE 5. Output of PRODIGAL. Identified CDSs with their location in the scaffolds. In yellow highlight the information about the 
codon DNA sequence where scaffold is followed by a number, the two examples are from the same scaffold number 1 of 2,838,209 

bp. _1 is the first CDS found in this scaffold, 2 and 106 are the first and last nucleic bases numbers of the CDS

TABLE 2. Twenty one putative genes encoding cellulose-degrading enzymes and 6 putative genes encoding xylan-degrading 
enzymes from POME metagenomic DNA library

Enzyme Class of enzyme Identity 
percentage (%)

Microorganism 

Cellulose-degrading 
enzymes 

cellulase 
glycosyl hydrolase family 5 
beta-glucosidase 
endo-1,4-D-glucanase 
endo-1,4-D-glucanase 
beta-glucosidase 
putative glycoside hydrolase 
glycosyl hydrolase family 5 
glycoside hydrolase 
beta-glucosidase-like glycosyl hydrolase 
cellulase M-like protein 
endoglucanase 
glycosyl hydrolase family 5 
beta-glucosidase-like glycosyl hydrolase 
endoglucanase-like subfamily M42 peptidase 
beta-glucosidase 
endo-1,4-beta-glucanase 
endoglucanase M 
beta-glucosidase-like glycosyl hydrolase 
endoglucanase 
endoglucanase 

100.0
100.0
99.7
99.7
99.6
99.6
99.6
99.0
98.8
98.3
98.3
96.6
93.8
90.6
86.7
84.7
79.2
75.4
68.1
65.4
63.3

Staphylococcus hominis
Pseudomonas sp. NBRC 111130
Serratia marcescens
Serratia sp. YD25
Serratia marcescens EGD-HP20
Pseudomonas sp. NBRC 111130
Staphylococcus hominis
Pseudomonas sp. NBRC 111130
Serratia sp. YD25
Pseudomonas sp. GM84
Streptococcus pneumoniae
Serratia marcescens
Pseudomonas sp. NBRC 111130
Serratia marcescens FGI94
Pseudomonas syringae pv. syringae B64
Serratia rubidaea
Staphylococcus aureus O46
Staphylococcus aureus
Xanthomonas gardneri ATCC 19865
Phyllobacterium sp. YR531
Pseudomonas aeruginosa

Xylan-degrading 
enzymes

beta-1,4-xylanase 
glycosyl hydrolase family 10 
putative xylanase/chitin deacetylase 
endo-1,4-beta-xylanase A precursor 
endo-1,4-beta-xylanase A 
endo-1,4-beta-xylanase A precursor 

99.0
99.0
99.0
92.1
61.1
30.3

Serratia marcescens
Serratia sp. YD25
Streptococcus pneumoniae
Cronobacter dublinensis 1210
Paenibacillus sp. AD87
Enhygromyxa salina
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positives. The CDSs are presented in Word-Format and 
shown the sequence of the CDS and the location in the 
scaffolds (Figure 5). The function of each predicted 
genes has been assigned with blastp vs non-redundant 
proteins function in BLAST software. Two documents 
were given by BLAST, first file, blastp-parsed-top-3, 
presents the top three similar functions of each CDS 
(Table 1) and the second file, blastp-putativeID file, 
presents the putative ID of each protein found in the 
available database. In these results, 21 putative genes 
encoding cellulose-degrading enzymes and 6 putative 
genes encoding xylan-degrading enzymes have been 
identified identical to previously known genes (Table 2). 
These genes show different identity percentages from 
30.3% to 100%. From a bioinformatician view point, one 
different nucleotide within the gene sequence makes it 
novel while some of the experts find that differences in 
hot spots or conserved domains regions may make the 
gene or the enzyme novel. From a scientist view point 
(Uwe T. Bornscheuer, personal communication) ‘some 
scientists claim that if a paper has the phrase ‘a novel 
enzyme’, this translates into ‘yet another enzyme’; for 
instance, if hundreds of glycosyl hydrolases have been 
described, many of these enzymes act on the same sugars 
with the same substrate specificity and cleavage site/
preference. Strictly, that means: a novel enzyme must 
be an enzyme catalyzing a novel chemical reaction. This 
is however a rather rare event. Most scientists accept 
that a novel enzyme could also be an enzyme differing 
substantially from the well-described ones, e.g. lipase 
CAL-A differs substantially from lipase CAL-B (and most 
other lipases), so it is rather novel, i.e. thermostable, 
can catalyze acyltransfer in water and accepts tertiary 
alcohols. If our glycosyl hydrolases work at a totally 
different pH optimum, that could be interesting, is any 
cleaves a different bond in sugars, then for sure it is 
rather novel. If the sequence, structure and properties 
are very close to known enzymes, then this is not a 
‘novel enzyme’.

CONCLUSION

In NGS-data analysis, choosing the right work flow and 
pipeline is the most crucial part to succeed the work and to 
achieve the aim. In this work, the objective was to decode 
the genetic code and simplify the complicated raw data 
of NGS to come out with cellulose and xylan-degrading 
enzymes in POME metagenome and this was achieved and 
27 (21 + 6) of known and potentially novel enzymes are 
found in our 30 positive fosmid clones. Our huge data is 
still holding a lot of other enzymes or other proteins that 
may be identified in the future. 
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