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ABSTRACT

In this paper, a mathematical model of dengue incorporating two sub-models that: describes the linked dynamics 
between predator-prey of mosquitoes at the larval stage, and describes the dengue spread between humans and adult 
mosquitoes, is formulated to simulate the dynamics of dengue spread. The effect of predator-prey dynamics in 
controlling the dengue disease at the larval stage of mosquito populations is investigated. Stability analysis of the 
equilibrium points are carried out. Numerical simulations results indicate that the use of predator-prey dynamics of 
mosquitoes at the larval stage as biological control agents for controlling the larval stage of dengue mosquito assists 
in combating dengue virus contagion. 
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ABSTRAK
Dalam kertas ini, satu model matematik denggi yang menggabungkan dua sub-model iaitu: menerangkan dinamik 
antara nyamuk  pemangsa-mangsa  pada peringkat jejentik dan menerangkan penyebaran denggi antara manusia dan 
nyamuk dewasa, diformulasikan untuk mensimulasi dinamik penyebaran denggi.  Kesan dinamik pemangsa-mangsa 
untuk mengawal penyakit denggi pada peringkat jejentik populasi nyamuk diselidik. Analisis kestabilan titik 
kesimbangan dijalankan. Simulasi berangka menunjukkan bahawa penggunaan dinamik pemangsa-mangsa nyamuk 
pada peringkat jejentik sebagai agen kawalan biologi untuk mengawal tahap jejentik nyamuk denggi membantu dalam 
memerangi penularan virus denggi. 

Kata kunci: Keseimbangan endemik; pemangsa-mangsa; simulasi berangka; virus denggi

INTRODUCTION

Dengue is a disease that is endemic in over a hundred 
countries (WHO 2016). Since the 1970s, dengue fever has 
spread throughout the Southeast Asia and as of 2010 about 
60 million people were infected with the virus (Wen et 
al. 2016). Dengue virus is transmitted to humans through 
a type of mosquito known as Aedes aegypti (Zaini et al. 
2019). Aedes aegypti is responsible for most of the global 
dengue diffusion although some other species such as 
Aedes albopictus is also involved (Nuraini et al. 2009; 
Ong 2016). Infection with dengue virus may cause either 
dengue fever (DF), dengue hemorrhagic fever (DHF) or 
dengue shock syndrome (DSS) (Derouich & Boutayeb 
2006). The DHF and the DSS are the severest forms of 
dengue disease which may lead to fatality greater than 
20% (WHO 2016). Individuals infected by one serotype 
of the virus will become immune to that serotype. 
Nevertheless, subsequent infection with any of the other 
three serotypes makes the individual prone to DHF and 
DSS. The DF is described by a sudden fever and intense 
headaches and persists for three to seven days. On the 
other hand, the DHF or DSS is characterized by a sudden 
fever, nausea, vomiting and fainting due to low blood 

pressure. It takes between two to three days to recover 
and may lead to death (Derouich & Boutayeb 2006). 
Thus investigating possible procedures for controlling the 
spread of dengue is important. The best way to manage 
dengue occurrence is to focus on prevention - keeping the 
mosquito population below the spread threshold (Esteva 
& Vargas 1998).

Many mathematical models of dengue transmission 
dynamics have been developed. Bailey (1975) introduced 
the first basic mathematical model of dengue. A mathematical 
model for dengue with variable humans and mosquitoes 
consisting of susceptible-infected-recovered model for 
humans and susceptible-infected for the mosquitoes was 
formulated. Later, Esteva and Vargas (1998) extended 
the Bailey’s model to establish the global stability of the 
endemic equilibrium to the model. They concluded that 
the disease-free equilibrium is stable whenever a basic 
reproduction number is smaller than unity. This model was 
used to study the effectiveness of insecticide dispersion. 
Derouich and Boutayeb (2006) formulated a mathematical 
model for dengue fever with the aim of investigating the 
effect of immunization. They also discussed the possibility 
of a partial vaccination to control a second epidemic and 
the evolution of dengue to DHF. Yang and Ferreira (2008) 
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extended the basic model of Bailey (1975) by testing 
different vector-control strategies. Mosquito maturation 
stages and a variable recruitment rates were taken into 
account. They introduced an efficiency index, defined as 
the reduction factor of the adult vector population after 
vector control, to evaluate the impact of control measures. 
It was found that although all the control policies were 
efficient to reduce vector population size with efficiency 
index up to 80%, this trend was not observed in the host 
population. For the most population, the reduction of 
dengue cases was less than 40%. Erikson et al. (2010a) 
then extended the model of Derouich and Boutayeb 
(2006) by adding the exposed class in human population. 
Other extensions of the Bailey dengue model includes the 
model developed by Erikson et al. (2010b) which took into 
account age structure in the human population. Pandey et 
al. (2013) developed two mathematical models of dengue 
transmission. In one of the models, the mosquitoes are 
explicitly tracked (vector-host dengue model) and the 
other was without explicit mosquito populations (SIR 
model). They studied the impact of modeling assumptions 
on dengue dynamics in Thailand by fitting the DHF data 
to a simple vector host and SIR models by using Bayesian 
Markov chain Monte Carlo estimation. They showed 
that the model selection of SIR model was superior to the 
vector–host model for the DHF data from Thailand. To 
the best of our knowledge, the aforementioned studies did 
not assess the impact of any control strategies to control 
the dengue epidemic. 

Biological approaches are also being considered as 
an alternative method to control mosquito populations 
(Nyamah et al. 2011). For example, the use of 
Toxorhynchites splendens (Tx. splendens) species 
mosquitoes predatory in controlling Aedes aegypti at 
the larval stage of mosquito populations (Huang et al. 
2017). Moreover, the use of larvivorous Tx. splendens 
mosquitoes is an environment-friendly method to 
control the mosquito larvae (Nyamah et al. 2011; Steffan 
& Evenhuis 1981). Besides, Aedes aegypti prey is 
associated with the presence of Tx. splendens predator 
because both species share the same breeding habitat. 
Tx. splendens predator larvae frequently coexist together 
with other species of mosquito larvae in the same habitat 
(Zuharah et al. 2015). Ali et al. (2015) developed a 
mathematical model of Tx. splendens mosquitoes as 
a biological control strategy to reduce dengue disease 
propagation, modified from the model of Rodrigues et 
al. (2012). They take account the aquatic stage of Aedes 
aegypti mosquitoes but did not observe Tx. splendens 
mosquitoes as biological control strategy at the aquatic 
stage. Moreover, the link between these two species of 
mosquitoes was not mentioned in the model. They did 
not consider the larval stage of both mosquitoes species.

Moore et al. (2010) derived the first mathematical 
model that linked the predator-prey and host-pathogen 
theory. The work aimed at investigating the indirect 
consequence of predators on vector-pathogen dynamics. 

The model was used to establish whether the predation 
can check pathogen perseverance or change the stability 
of host-pathogen dynamics. The study showed that the 
absence of predation leads to proportional increment 
of pathogen pervasiveness in the host with vector 
productiveness. The predator can raise the host number 
indirectly by reducing or eradicating infectivity in the 
host population. However, only one control strategy was 
considered in this model.

Lou and Zhao (2011) presented a mathematical 
malaria model which describes the linked dynamics 
between the host-vector and the predator-prey 
interactions. The model modified the work of Moore et 
al. (2010) by focusing on the impact of the predator-larval 
mosquito relations on the transmission of mosquito-borne 
pathogens. The study evaluated the possible impacts 
of the biological control strategy on the spread of the 
disease. They concluded that introducing carnivorous 
fish as a biological control strategy can have important 
consequences for the disease dynamics. The introduction 
of larvivorous fish also has consequences for malaria 
dynamics and indicates that strong predators are required 
on larval mosquitoes. Nevertheless, the model did not 
consider the susceptible human and the recovered human 
and only one control strategy was considered in this 
model. 

Ghosh et al. (2013) derived a nonlinear mathematical 
model for malaria which studied the introduction of 
predatory fish as a biological control agent by considering 
both human and mosquitoes populations variable. 
They modified the model of Lou and Zhao (2011) by 
incorporating all possible breeding sites of mosquitoes.  
They concluded that the introduced predatory fish has an 
effect on the spread of the disease. It should be noted the 
model did not consider the recovered human population 
since human are either recovered or get immunity and 
only one control strategy was used in this model. 

Most of the current activities to develop biological 
control strategies require several challenges, thus, making 
a prediction of the biological predator intervention 
uncertain. Based on this, the model considered in this 
study offers some extensions to the dengue transmission 
model in Ali et al. (2015), and Pandey et al. (2013) which 
describes the linked dynamics between the predator-
prey interactions, humans and adult mosquitoes 
interaction. The predator-prey dynamic of mosquitoes 
at the larval stage involve the use of larvivorous Tx. 
splendens mosquitoes as biological control agent for 
controlling the larval stage of dengue mosquito (Aedes 
aegypti). Moreover, the model will examine its impact in 
reducing the spread of dengue. The model involves the 
interactions between human and mosquito populations, 
and mathematically written as a system of ordinary 
differential equations.  

Our paper is structured as follows: in the next 
section, a mathematical model is developed to simulate 
the dynamics of the dengue disease spread. Equilibrium 
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state and stability are discussed subsequently. After that, 
the model is investigated numerically. Finally, we present 
the conclusion in the last section.

METHODS

FORMULATION OF THE MODEL

The works of Ali et al. (2015) and  Pandey et al. (2013) 

are extended by incorporating the use of predator-
prey dynamics of mosquitoes at the larval stage. We 
develop a mathematical model that integrates two sub 
interactions: predator-prey (larvivorous Tx. splendens 
and larvae Aedes aegypti mosquitoes) and human-adult 
mosquitoes. We seek to examine the indirect effect of 
predators via a mosquito since current models of disease 
dynamics have yet to consider the potential role of 
predators in regulating mosquito populations (Moore 
2010). Figure 1 shows a schematic diagram of the model. 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 1. Schematic diagram of the model 
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FIGURE 1. Schematic diagram of the model

MODEL STRUCTURE

The total human population at time t, denoted by H(t), 
is divided into susceptible human Hs(t), infected human 
HI(t)  and recovered human HR(t)  (Pandey et al. 2013). 
Hence, 

                                   H = HS + HI + HR                                                  (1)

The Aedes aegypti mosquito population is split into 
the larval stage of Aedes aegypti mosquitoes L , the 
larval stage of predatory mosquitoes (Tx. splendens 
mosquitoes) P and the total adult Aedes aegypti 
mosquito stage at a time t, denoted by V(t), which in turn 
is split into susceptible mosquitoes Vs(t)  and infected 
mosquitoes VI (t) . Thus, 

                                     V = VS + VI .	          (2)

HUMAN POPULATIONS

The susceptible humans are increased via recruitment of 
human (by birth or immigration) into the population at a 

   β2ε2c

k γL

VI

µPΛP

P

µL

HR

constant rate πH . They are reduced once the susceptible 
human acquires the disease after interacting with the 
infected Aedes aegypti mosquito at a rate β1ε 1c, where  β1 
is the transmission probability per bite and ε 1 is the biting 
rate of mosquitoes, c is the contact rate of mosquito per 
human per unit time. The recovered human turn out to 
be susceptible again at a rate γH . The susceptible human 
experiences natural death at a rate µH (Ali et al. 2015; 
Pandey et al. 2013). This gives

                                                                                      (3)

Infected humans are generated through infection of 
susceptible humans following an incubation period of 
4-10 days (WHO 2016). They acquire immunity at a rate 
αH, suffer a disease-induced death at a rate δH and natural 
death at a rate µH (Ali et al. 2015; Pandey et al. 2013). 
Thus, 

                                                                                       (4)

 .11 SHISRHH
S HμVcHεβHγπ

dt
dH



 .)(11 IHHHIS
I HμδαVcHεβ

dt
dH


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Infected human evolves to the recovered class after 
acquiring immunity at a rate αH. The recovered human 
population losses immunity at a rate γH and suffers a 
natural death at a rate µH (Ali et al. 2015; Pandey et al. 
2013). Hence,

(5)

LARVA STAGE OF PREDATORY MOSQUITOES
The main contribution of this paper is where the dengue 
model is extended to the larval stage of predatory 
mosquitoes. The predatory mosquito here is Tx. splendens 
mosquitoes. It is assumed that the larval stage of predatory 
mosquitoes P is generated by egg laying rate of the 
mosquitoes at a rate  PΛ . Predatory mosquito larval stage 
suffers a natural death at a rate µP. The larva matures at a 
rate πP and leaves the larval stage to adult mosquito with 
the assumption that k is the tropical convention efficiency. 
The adult Tx. splendens mosquitoes does not consume 
blood while feeding on sugar rich materials such as fruit 
and nectar (Benelli et al. 2016). The predation of the larvae 
by the predatory mosquitoes is assumed to take a linear 
response form with a constant rate γL (Ghosh et al. 2013). 
This gives

                                                                                       (6)

PREY MOSQUITOES POPULATIONS
The larval stage of Aedes aegypti mosquitoes L are 
generated by egg laying rate of the mosquitoes at a 
rate  LΛ . Other mosquitoes larvae suffer death due to 
larvivorous predatory Tx. splendens larvae feed on the 
mosquito larvae at a rate γLP and a natural death of larvae 
itself at a rate µL . Then, the larvae matures at a rate πV, 
leaving the larval stage to adult mosquitoes (Ghosh et al. 
2013). Thus, 
	                                    
                                                                                       (7)

Susceptible mosquitoes are generated via recruitment 
of Aedes aegypti mosquitoes (birth or immigration) 
at a constant rate πV. They acquire the infection after 
the interaction with humans, at a rate β2ε 2c, where β2 
is the probability of Aedes aegypti mosquitoes getting 
infected through infected humans, ε 2 is the biting rate 
of mosquitoes and c  is the contact rate of mosquito per 
human per unit time. It experiences a natural death at a 
rate µV  (Ali et al. 2015; Pandey et al. 2013).  Therefore, 
	                                          

   (8)

From the above assumptions and formulations together 
with the schematic diagram in Figure 1, the resulting 
system of non-linear differential equations for the dengue 
model is obtained:

	                                                               (9)  	
(9)

                                                                        

The model (9) describes the interaction between 
susceptible, infected and recovered human population in 
(91) - (93) with change in time. Similarly, the susceptible 
and infected mosquito populations interact in (96) - (97)
with change in time.

MODEL ANALYSIS

INVARIANT REGION

Let ( ) 7,,,,,, +∈RISRIS VVLPHHH
 be any solution of the 

system with nonnegative initial conditions that is,

	                                                             (10) 

Thus, from the standard comparison theorem by Cooke 
and Van Den Driessche (1996), it is clear that               , 
such as written in a simplified form. Thus,

	  
                                                where K is a constant.           (11)

Hence, all possible solutions of the human population of 
the model (9) are in the region

	                                              (12)

Similarly, all the possible solutions of the mosquito 
population of the model (9) are in the same region with 
human population as follow, 
	                                  

  (13)

	                                        (14)

Therefore, the feasible set of the model (9) is given by 
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The positively invariant is induced by the model 
(9) and hence, the non-negative properties have been 
preserved for the total size of the population. Furthermore, 
in this domain, it is sufficient to consider the dynamics of 
the flow generated by the model (9). The investigation of 
invariant region includes both humans and mosquitoes 
population.

POSITIVITY OF SOLUTION
Since the model (9) monitors human and mosquito 
populations, it is therefore important that all state 
variables involved are non-negative for all time and 
are bounded in 7

+R , because the total populations of both 
human and mosquito are non-negative. Let the initial 
data be {HS(0), HI(0), HR(0), P(0), L(0), VS(0), VI(0) > 0} 
∈Ω, 
Then, the solution set {HS, HI, HR, P, L, VS, VI}(t) of the 
model (9) is positive for all t > 0 . Based on the model (9) 
the first equation yields,
           

(16)

As ∞→t , HS (t) > 0, from the model (9) the seventh 
equation gives 
                                   

  (17)

As ∞→t , VI (t) > 0 . Similarly, it can be shown that 
HI , HR , L, P, VS  are greater than zero for all time, t > 0 .

EQUILIBRIUM POINTS AND STABILITY
In this section, the model (9) is analyzed to identify 
the equilibrium points of the system and their stability 
properties. To find the equilibrium points of the model 

(9), the model is set to zero on the right hand side to obtain 
the following system of equations;
	                                 

 

(18)

                
The model (9) exhibits two types of equilibrium which 
are disease-free equilibrium (DFE) and disease-free 
equilibrium state 0E  in the absence of infection by the 
disease (dengue). The DFE are equilibrium-point solutions 
when there is no disease (dengue). Diseased compartments 
are classes of both human and mosquito populations that 
are infected with dengue in the model (9). Therefore, in 
the absence of infection, that is when HI, VI = 0, the model 
(9) has a point known to be infection free equilibrium or 
disease-free equilibrium state 0E as a steady state. If  HI, VI 
= 0  is substituted in the model (9), the system reduces to 

πH - µH HS = 0 implying that  
H

H
S μ

πH *  for human population 

and for mosquito population, the system reduces to πV L - 
µV VS = 0, implying that   .

)(
Λ*

LVV
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S μπμ

π
V


  Consequently, the 

DFE point of the model (9) is attained by putting,
	                              

(19)

Thus, from (19) the infection free equilibrium point is 
given by,
	                            

   (20)

This represents the state where there is no infectivity 
in a community and it is known as the disease free 
equilibrium point.

BASIC REPRODUCTION NUMBER, 
In a fully susceptible population, the basic reproduction 
number is the number of new cases that one infected 
individual will produce for the duration of its period 
of infectiousness. As 0ℜ  < 1, each infected individual 
typically leads to less than one diseased individual and 
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hence the infection dies out. If  0ℜ  < 1, each infected 
individual will produce more than one new infected 
individual. Thus, the infection overruns the population. 
Therefore, it is a measure of the severity of the epidemic. 
Next Generation Operator is then used to establish the 
linear stability of the disease (Diekmann et al. 1990). 
Since the concern is with the populations that spread the 
infection (Heffernan et al. 2005), we thus, considers only 
the infected compartments HI, VI  of the model (9). In order 
to compute the basic reproduction number 0ℜ , we have

	                                     

(21)

Then, the matrices Fi  and Vi  are the rates of appearance 
of new infection in the compartment i and the removal 
of persons/mosquitoes into and out of compartment i by 
all other means respectively. Hence, they are obtained as 
follows,

and 

Thus, to obtain the appearance of new infection (Fi) and 
the removal of individuals in and out of the compartment 
i and Vi from model (9), two infected classes need to be 
considered; one class of humans and the other one from 
Aedes aegypti mosquito populations. Partial derivatives 
of  Fi  and Vi   with respect to the infected classes, HI, VI   
are given respectively, as 

Evaluating F at DFE , 0E  yield 

                                                                         ,
                                                                         

and

                                                                    .

The two matrices F and V -1  are conducted using Maple-17 
to obtain the basic reproduction numbers and it is given 
by,
                   

(22)

Hence, The DFE of the model (9) is given by 0E which is 
locally asymptotically stable. This means the disease will 
die out in the community (stable) if 0ℜ  < 1  and unstable 
if 0ℜ  > 1 .

NUMERICAL SIMULATIONS 
In order to illustrate the behavior of both mosquito and 
human population interact with and without control 
of predatory mosquitoes, numerous simulations were 
conducted by applying the set of parameters values 
depicted in Table 1. All the simulations and graph were 
obtained using MATLAB software.

 

















IVS
I

IHHHS
I

VμVλ
dt

dV

HαμδHλ
dt

dH

2

1 )(

 ,
2

1










S

S
i Vλ

Hλ
F

 .
)(








 


IV

IHHH
i Vμ

Hαμδ
V

   2
22

2
1111

0 )(
VHHHLHH

LVHcFV








   

 






















0

)(
Λ

0

122

111

LVV

LV

H

H

μπμ
πcεβ

μ
πcεβ

F

 




















V

HHH

μ

αμδV 10

01
1

 

, 








 


V

HHHV



0

0
. 

 











0
0

122

111

S

S

Vcεβ
Hcεβ

F

TABLE 1. Description of parameters for model (9)

Parameter Description Est. value References

πH Recruitment rate of human 60 Andraud et al. (2012)

πV Recruitment rate of Aedes aegypti mosquitoes 3000 Andraud et al.(2012)

µH Natural death of human 0.0000457 Al-Sulami et al. (2014)

δH Disease-induced death of human 0.05 Hove-Musekwa et al. (2008)
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γH Rate of loss of human immunity 0.02877 Menach et al. (2005)

β1 Probability of human getting infected 0.75 Al-Sulami et al. (2014)

1 Biting rate of human 1 Derouich and Boutayeb (2006)

c Contact rate of Aedes aegypti mosquito per human per unit 0.75 Derouich and Boutayeb (2006)

β2 Probability of Aedes aegypti mosquitoes getting infected 1 Al-Sulami et al. (2014)

2 Biting rate of Aedes aegypti mosquitoes 0.5 Al-Sulami et al. (2014)

αH Recovery rate of human 0.1428 Al-Sulami et al. (2014)

µV Natural death of Aedes aegypti mosquitoes 0.25 Al-Sulami et al. (2014)

Egg laying rate of predatory mosquitoes 50 Ghosh et al. (2013)

Egg laying rate of Aedes aegypti mosquitoes 10 Ghosh et al. (2013)

k Tropical convention efficiency 0.1 Ghosh et al. (2013)

γL Predation of larva stage by predatory mosquitoes 0.1 Ghosh et al. (2013)

πP Larva stage mature of predatory mosquitoes 0.0625 Ghosh et al. (2013)

µP Natural death of predatory mosquitoes 0.36 Ghosh et al. (2013)

µL Natural death of Aedes aegypti larva 0.05 Ghosh et al. (2013)
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The graph in Figure 2 indicates that the susceptible 
population is decreasing where every susceptible person 
is being infected by day 31. The line for a less infectious 
disease would slope more gently to the right while the 
infected population is increasing rapidly up to a maximum 
of 3400 peoples by the day of 34, and then falls more slowly 
until the day of 60. The recovered population increased 
continuously to the day of 60. This is because there is 

no control strategy (predatory mosquitoes) to control the 
spread of the virus. The graphs in Figure 3 indicate the 
typical behavior of human populations with the control 
of predatory mosquitoes. It has been shown that in the 
presence of control of predatory mosquitoes, the number 
of human decreases between the 50th and 60th day. The 
graph in Figure 4 shows that predatory mosquitoes can 
reduce the Aedes aegypti mosquitoes at the larval stage 
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since the egg laying rate is 50 for predatory mosquitoes 
and 10 for prey. 

CONCLUSION

Biocontrol strategies for mosquito populations are 
needed to help reducing the use of insecticides that are 
currently used for mosquito control. Despite significant 
improvement to the existing methods so far, larger scale 
trials are needed to determine the effective method of 
mosquito biocontrol. In view of this finding has shown 
that the use of predator-prey dynamic of mosquitoes at 
the larval stage (larvivorous Tx. splendens larvae) can 
be a potential biological control agent for controlling the 
larval stage of dengue mosquito (Aedes aegypti) and thus 
in controlling the dengue virus.
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