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ABSTRACT

Seagrass ecosystems can be mapped using RS because this technique is versatile and accurate. The availability of 
seagrass information is very important for the sustainable management of seagrass ecosystems. The use of RS technology 
to map seagrass has become the focus of many researches worldwide by using various types of platforms, sensors and 
various algorithms for satellite imagery processing. In literature, there have been many review papers related to seagrass, 
however, a comprehensive review on various aspects of seagrass is limited. The objective of this review paper was to 
fill the gap by highlighting the existing RS technology, seagrass biophysical property and image processing analysis. 
Review results indicated that RS technology is a powerful tool for accelerating seagrass mapping and for monitoring the 
condition of seagrass ecosystems at regional scale due to the availability of long-archived RS data and their free-access. 
In literature, the empirical approaches still dominated seagrass mapping methodology compared to the semi-analytic and 
analytic approaches. A clear conclusion from this review is that the development in sensor technology and data processing 
algorithm is still ongoing and has driven RS capabilities to map seagrass more rapidly, accurately and less expensive. 
Future research on seagrass mapping could be focused on a more automated classification by applying machine-learning 
to handle a large amount of data to improve accuracy and to discover robust methods for image pre-processing that is 
suitable for tropical shallow waters such as those in Indonesia. 
Keywords: RS; seagrass; shallow water; tropical region

ABSTRAK

Ekosistem rumput laut dapat dipetakan menggunakan penginderaan jauh kerana teknik ini serba boleh dan tepat. 
Ketersediaan maklumat rumput laut sangat penting untuk pengurusan ekosistem rumpai laut yang lestari. Penggunaan 
teknologi penginderaan jauh untuk memetakan rumput laut telah menjadi tumpuan banyak penyelidikan di seluruh 
dunia dengan menggunakan pelbagai jenis pentas, sensor dan pelbagai algoritma untuk pemprosesan citra satelit. Dalam 
kepustakaan, terdapat banyak makalah kajian yang berkaitan dengan rumput laut, namun, tinjauan komprehensif 
mengenai pelbagai aspek rumput laut adalah terbatas. Objektif kertas ini adalah untuk mengisi jurang dengan 
mengetengahkan teknologi penginderaan jauh yang ada, harta biofisik rumput laut dan analisis pemprosesan gambar. 
Hasil tinjauan menunjukkan bahawa teknologi penginderaan jauh adalah alat yang ampuh untuk mempercepat 
pemetaan rumput laut dan untuk memantau keadaan ekosistem rumput laut pada skala wilayah kerana ketersediaan 
data penginderaan jauh yang diarkibkan lama dan akses bebasnya. Dalam kepustakaan, pendekatan empirik masih 
mendominasi kaedah pemetaan rumput laut berbanding dengan pendekatan separa-analitik dan analitik. Kesimpulan 
yang jelas daripada tinjauan ini adalah bahawa pengembangan teknologi sensor dan algoritma pemprosesan data masih 
berterusan dan mendorong keupayaan penginderaan jauh untuk memetakan rumput laut dengan lebih cepat, tepat dan 
lebih murah. Penyelidikan masa depan mengenai pemetaan rumput laut dapat difokuskan pada pengelasan yang lebih 
automatik dengan menerapkan pembelajaran mesin untuk menangani sejumlah besar data untuk meningkatkan 
ketepatan dan untuk menemukan kaedah yang kuat untuk pemprosesan gambar yang sesuai untuk perairan dangkal tropika.
Kata kunci: Kawasan tropika; penginderaan jauh; perairan cetek; rumput laut 
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INTRODUCTION

Coastal environment is a vulnerable ecosystem because 
of its location between terrestrial and marine ecosystems. 
Activities that occur in the upstream watershed such as 
mining and deforestation as well as processes that occur 
in the coastal area cause damage to coastal ecosystems. 
Seagrass, coral reefs and mangroves play an important 
role in a shallow-water coastal ecosystem (Veettil et al. 
2020). One of such importance is indicated by the fact 
that seagrass provides 24 different ecosystem services 
(Nordlund et al. 2016). There are several important 
functions of seagrass for coastal ecosystems, such as 
a place to live for fish (Criales et al. 2015) and the 
provision of food for dugong and green turtle (Hashim 
et al. 2017; Scott et al. 2018). Seagrasses contributes to 
climate change mitigation through carbon sequestration 
and storage (Stankovic et al. 2021). Seagrass also provide 
important ecosystem services for protection of coastline 
from storm surges and coastal erosions (Potouroglou et 
al. 2017). These important roles of seagrass need to be 
supported by the availability of data and information, 
especially seagrass distribution and health. Updated 
seagrass status information helps decision makers 
in developing pragmatic action plan since seagrass 
distribution and abundance are indicators of the coastal 
ecosystem health.

Green and Short (2003) stated that the world’s 
seagrass area was about 177,000 km2 and was divided 
into six bioregions. One of these bioregions is the 
Tropical Indo-Pacific (TIP), which has the richest seagrass 
biodiversity in the world (Waycott et al. 2009). McKenzie 
et al. (2020) estimated seagrass cover worldwide 
between 160,387 km2 and 266,562 km2 and nearly 
half occurring in the Indo-Pacific region. Fortes et al. 
(2018) reported that the extent of seagrass in Southeast 
Asia was about 36,762.6 km2, consisting of 21 seagrass 
species, nine genera and four families making up 29% 
of the world’s seagrass species. Human activity and 
climate change have caused a decline in seagrass areas 
worldwide (Duarte et al. 2018). On a global scale, the 
world’s seagrass area has decreased by about 3,000 km2 
in 20 years, or by about 7% of the total world seagrass 
area (Waycott et al. 2009). Sudo et al. (2021) reported that 
more than 60% of seagrass meadows in Southeast Asia 
are declining at an average of 4.7% per year.

Several methods are available to obtain information 
considering the distribution of seagrass. Traditional 
seagrass mapping has generally focused on onsite field 
observations by snorkeling, diving and using a boat. 
Such a method is time-consuming and expensive and 

causes physical damage to seagrass during sample 
collections (Misbari & Hashim 2016). Remote sensing 
(RS) technology has been widely used for seagrass 
mapping because it has several advantages compared to 
in-situ observations including its capability to observe 
large areas. RS method is more efficient in terms of time 
and cost as a repetitive observation can easily be made 
(Hossain et al. 2015a). In recent years, unmanned aerial 
vehicles have become a popular way to observe seagrass 
beds (Yamakita et al. 2019). This study examined papers 
discussing RS applications for seagrass mapping.
 Seagrass has attracted the attention of researchers 
in many countries from various aspects for instance 
data acquisition and processing including RS technique, 
ecological aspect, and economic valuation aspect. 
Rapid development of research related to RS technology 
for seagrass has inspired many researchers to review 
existing papers with various focuses. This study 
examined more than 160 research papers discussing RS 
applications for seagrass mapping including satellite 
image processing needed, seagrass distribution, and 
key seagrass parameters. Part of the review papers were 
focused on evaluating the status and potential of using RS 
technologies in seagrass mapping as well as identifying 
benefits and limitations of each technique (Ferwerda 
et al. 2007; Gumusay et al. 2019; Huong et al. 2017; 
Veettil et al. 2020). In addition, seagrass distribution, 
seagrass extent, species diversity, temporal change 
and conservation have also become the focus of some 
researchers (Fortes et al. 2018; Ooi et al. 2011; Pham et 
al. 2019; Sudo et al. 2021).
 Based on such background, the objective of this 
paper is to highlight four main aspects, namely: seagrass 
distribution and condition, especially in the TIP bioregion; 
RS technology for seagrass mapping; key parameter of 
seagrass properties; and image processing methods for 
seagrass mapping. The results of this review can be used 
by researchers to determine an appropriate seagrass 
research development strategy and to indicate further 
exploration. Meanwhile, for coastal managers the existing 
results may be used to select a suitable method that likely 
can be implemented for the national mapping program.

SEAGRASS DISTRIBUTION STATUS

Seagrass grows in shallow waters such as bays, estuaries 
and capes and usually can be found at a depth of less than 
90 m. In general, it is located in shallow-water, tidal area 
and close to coral reef. Seagrass ecosystems are globally 
distributed covering the world oceans except for Antartica 
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(McKenzie et al. 2020; Short et al. 2007). Southeast Asia 
is the center for tropical seagrasses (Short et al. 2001) 
which has the greatest seagrass diversity in the TIP 
bioregion, with 17 of the 24 species. Short et al. (2007) 
reported the TIP has 24 tropical seagrass species, where 
13 species are found in Papua New Guinea, 16 species 
in the Philippines and 16 species in Australia. Fortes et 
al. (2018) reported that the Southeast Asian region has 
21 species. According to Lamit et al. (2017), the highest 
seagrass species diversity was found in the Philippines 
(19 species) followed by Malaysia and Indonesia with 
16 species each, and the lowest seagrass species diversity 
is in Brunei (7 species). The most widespread species 
in the Southeast Asia is Thalassia hemprichii having 
distribution records in all ecoregions (Fortes et al. 2018). 
Based on Sjafrie et al. (2018), Indonesia has 15 of the 
60-seagrass species seen around the world, such as 
Cymodocea rotundata, C. serrulata, Enhalus acoroides, 
Halophila decipiens, H. ovalis, H. minor, H. spinulosa, 
Halodule uninervis, Haludole pinifolia, Syringodium 
isoetifolium, Halophila becarii, and Ruppia maritima, 
including Halophila sulawesii found by Kuo (2007).

From the point of view of the seagrass extent, 
Indonesia has the largest seagrass area among those 
Southeast Asian countries with the total extent 
approximately 3,000,000 ha (Ogawa et al. 2011), 
followed by Cambodia, Thailand, and Vietnam (Sudo et 
al. 2021). According to Sjafrie et al. (2018), the area of 
seagrass in Indonesia in 2017 was 150,693.16 ha, while 
in 2018 the area was 293,464 ha; so, there has been 
an increase in seagrass area of about 142,771 ha. It is 
estimated that seagrass area in 2018 were only 16-35% 
of the whole seagrass area in Indonesia. 

TYPE OF RS TECHNIQUES FOR MAPPING SEAGRASS

Seagrass resources can be mapped using approaches 
that vary from in situ field-observation methods to RS. 
Winters et al. (2017) studied field-survey methods for 
mapping seagrasses in Gulf of Aqaba, Red Sea such as 
the snorkeling-based mapping method and down-looking 
towed video camera. The snorkeling-based method is 
effective at depths of up to 15 m in relatively turbid water 
and up to 25 m in clearer water (Mejia et al. 2016). In a 
deeper water and at large area, seagrass can be mapped 
using underwater videos or hyper-spectral photography 
(Vandermeulen 2014), side-scan and multi-beam sonar 
data, scuba divers or boats as working platforms (Hill 
et al. 2014). Meanwhile, the selection of an appropriate 
scale is critical for mapping seagrass. McKenzie (2003) 

stated that the selected mapping approach depends 
on the size of survey area and generally divided into 
regional scales (tens of km), local scales (tens of m to 
km) and specific scales (m to tens of m). Currently, there 
are two seagrass citizen science (SCS) programs, namely 
Seagrass-Watch and Seagrass-Spotter which cover 
a wide spatial scale, from local to global (Jones et al. 
2018). The SCS program is a field-observation method 
that provide a significant opportunity to assist with filling 
the gaps of seagrass ecology data, particularly their spatial 
extent and condition. Seagrass-Watch is a participatory 
science program (Haklay 2013) developed to integrate 
scientists and civil to accurately monitor status and 
trend of seagrass conditions. Meanwhile, Seagrass-
Spotter was developed in 2016 by using a smartphone 
app and website database as its platform and facilitates 
participants’ ability to find something interesting about 
seagrass and upload geo-tagged photos. 

Use of RS technology for seagrass mapping has 
been made since the Landsat image was released in 
1972 (Wulder et al. 2008). A rapid development of RS 
technology was obvious after the launch of several 
types of sensor placed on an aircraft such as LiDAR 
and those mounted-on satellites, including Sentinel, 
Quick Bird and Pleiades. In general, RS imagery 
for seagrass can vary from simple to very complex 
approaches, namely empirical, semi-analytical and 
analytical methods (Dekker et al. 2007). Currently, the 
empirical approach is the most widely used method 
with various satellite images and in-situ observations. 
Ideally, the in-situ observation coincides with satellite 
overpass, however, natural and weather conditions 
including cost and time needed to mobilize people and 
equipment may become constraints in achieving this 
ideal situation. According to Hossain et al. (2015a), 
drawbacks of the empirical method are: it is statistically 
extrapolation thus the accuracy of the classification is 
questionable; classification images are not transferable 
to other locations or other images; and there is inability 
to quantify multitemporal cover change detection. The 
semi-analytical approach provides seagrass maps of 
better accuracy than the empirical approach (Roelfsema 
et al. 2014), but this approach requires the spectral 
library of various components as an input to the model 
and requires more intensive field surveys (Duffy et al. 
2017). The analytical approach uses forward and inverse 
models based on radiative transfer (RT). It has several 
advantages over other approaches, such as repeatability, 
transferability, sensitivity and error analysis and can 
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process archival data by using currently developed 
methodology (Dekker et al. 2007).

RS is differentiated based on types of system, 
namely passive and active sensors; both have been used 
for mapping seagrass (Duffy et al. 2017; Ferwerda et 
al. 2007). Platforms can be divided into spaceborne, 
airborne and those placed underwater or on boats (Hossain 
et al. 2015a). Based on spatial resolutions, satellite RS 
data can be divided into three groups, namely medium 
spatial resolution (MSR) with pixel size of 1 km to 30 m, 
high spatial resolution (HSR) with pixel size of <30 m, 
and very high spatial resolution (VHSR) with pixel size 
of <1 m (Huong et al. 2017). Veettil et al. (2020) stated 
that key factors in determining the type of RS image to 
be used are spatial resolution, spectral resolution, sensor 
system, and type of platform. 

MSR uses multispectral spaceborne images and is 
most widely used for seagrass mapping by researchers 
in Southeast Asia because it is freely available (Huong 
et al. 2017) and has a short return period of between 
10 and 16 days. It has a long-term continuity, for i.e. 
Landsat and ASTER provided a continuous record of 
earth observation for 35 and 22 years (ERSDAC 2003; 
Wulder et al. 2008), respectively. Hence, both are very 
useful for environmental monitoring. MSR images are 
used for seagrass study include Landsat (Vidyan 2018; 
Vo et al. 2020), ASTER (Wicaksono et al. 2017); ALOS 
AVNIR-2 (Carlson et al. 2018), SeaWiFS (Dierssen et 
al. 2010) and MODIS (Perez et al. 2018). HSR images 
have been widely used for seagrass mapping including 
SPOT (Barillé et al. 2010), Sentinel-2A (Ha et al. 2020; 
Traganos et al. 2017), RapidEye (Li 2018; Traganos 
et al. 2018) and PlanetScope (Wicaksono & Lazuardi 
2018). In a complex environment with various species, 
Sentinel-2A has been able to map the distribution of 
seagrass in Indonesia waters with an overall accuracy 
of 61.9% (Fauzan et al. 2017). From this research it 
was likely that Sentinel-2A provides good results for 
mapping and monitoring coastal resources and shallow-
water environments. Furthermore, other advantages of 
RS data include large coverage, long time series data, 
and freely available.

VHSR includes a group of sensors that have a 
spatial resolution of <1 m in the panchromatic band 
and approximately <4 m for the multispectral bands. It 
has been widely used for seagrass mapping including 
GeoEye (Chayhard et al. 2018), WorldView-2 (León-
Pérez et al. 2020; Su & Huang 2019), WorldView-3 
(Collin et al. 2017; Niroumand-Jadidi & Vitti 2016), 
IKONOS (Pu & Bell 2017) and QuickBird (Urbanski et 
al. 2009).

MSR imagery is used for coarse-scale mapping 
of seagrass distribution. Meanwhile, VHSR and HSR 
are used to map seagrass in a detailed level to identify 
seagrass cover, species, and biomass (Valle et al. 2015). 
Phinn et al. (2008) mapped seagrass species, cover 
and biomass in shallow water by using Landsat TM, 
QuickBird-2 and hyperspectral airborne CASI-2. The 
results showed that the highest overall accuracy was 
obtained from CASI-2 (>80%) followed by QuickBird-2 
and Landsat TM. Benfield et al. (2007) used IKONOS, 
QuickBird-2 and Landsat ETM+ and the results also 
showed that Landsat ETM+ provided the lowest accuracy. 
Pu and Bell (2017) examined the ability of IKONOS to 
map seagrass cover and compared it with maps from 
Landsat. In their study, it was found that IKONOS images 
provided higher accuracy than Landsat TM for submerged 
aquatic vegetation (SAV). 

According to Hedley et al. (2012) seagrass mapping 
requires RS images with HSR, high radiometric 
resolution and several bands that can penetrate water. 
However, HSR and VHSR images have limitations, as 
stated by Chen et al. (2016) for e.g. narrow coverage, 
limited temporal resolution, high photographic 
distortion, low radiometric resolution, and high cloud 
cover (i.e. in optical RS). In addition, they are difficult to 
interpret in deep and turbid water due to high variability 
of sun glint reflectance. Furthermore, they are high priced.

Active sensors such as LiDAR have been used to 
map seagrass in turbid coastal waters. Pan et al. (2015) 
applied an image fusion technique between active LiDAR 
and passive hyperspectral sensors to map seagrass in 
relatively highly turbid waters. Acoustic technology to 
map seagrass has been used for tropical waters such as 
Bintan Island, Indonesia with an overall accuracy of 
87% (Manik & Apdillah 2020). Collings et al. (2019) 
have combined LiDAR data with World View-2 for 
seagrass mapping. Meanwhile, Luo (2018) assessed 
seagrass by combining Sentinel-1 SAR and Sentinel-
2A and obtained an overall accuracy of 77.7% and a 
kappa coefficient of 0.75. According to Hossain et al. 
(2015c), the acoustic method is relatively more effective 
compared to the use of optical sensors in mapping 
seagrass species in relatively turbid waters. 

KEY PARAMETERS OF SEAGRASS PROPERTIES 
BIOPHYSICAL PARAMETERS OF SEAGRASS PROPERTIES

RS is used to map main items of information, namely 
the biophysical properties of seagrass. The biophysical 
properties of seagrass include spatial cover, seagrass 
species, leaf area index (LAI), biomass and carbon stock. 
In addition, there are also secondary information that 
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affects seagrass life called as aquatic environmental 
parameters for instance sea surface temperature, salinity, 
CDOM (colored dissolved organic matter), turbidity, 
sea-level rise, and pollution (Ferwerda et al. 2007; 
Hossain et al. 2019). RS has succeeded in analysing the 
biophysical properties of seagrass parameters, including 
the distribution of seagrass areas (Hossain et al. 2015a; 
Kaewsrikhaw et al. 2016), species composition (Dierssen 
et al. 2015), and carbon stocks (Barillé et al. 2010; 
Stankovic et al. 2021). The percentage seagrass cover is 
defined as the substrate area covered by seagrass that can 
be observed from above (Phinn et al. 2008; Roelfsema 
et al. 2014). McKenzie et al. (2001) stated that the 
percentage seagrass cover is a key factor in seagrass 
monitoring. Phinn et al. (2008) identified seagrass cover 
by using Landsat TM, CASI and QuickBird imagery 
in Moreton Bay, Australia; the classification accuracy 
was no higher than 45%. In literature, empirical model 
was often used for mapping percentage seagrass cover 
by correlating pixel value of corrected satellite images 
with in-situ data (Phinn et al. 2008). Zoffoli et al. 
(2020) studied seagrass percent cover and seagrass leaf 
biomass using Sentinel-2A in European Atlantic coast. 
The results obtained quite good accuracy for seagrass 
biomass prediction (RMSD = 5.31 g DW m−2, R2 = 0.88) 
as well as for seagrass percent cover (RMSD < 5%, R2 ≥ 
0.98).  Furthermore, when assessing seagrass percentage 
cover by using variation of images at 2-30 m spatial 
resolutions, Wicaksono et al. (2019) obtained little RMSE 
difference (3.4%) from the results. It was represented 
by relatively similar overall seagrass percentage cover  
pattern. However, the level of information precision is 
reduced at lower spatial resolution. The study concluded 
that the aforementioned situation was strongly affected 
by seagrass bed configuration; a continuous seagrass 
bed can be mapped with higher accuracy than a patchy 
seagrass bed.

LAI describes a total area of photosynthesis per unit 
area of the substrate and can be used as an indicator of 
the crop growth rate, radiation intensity and the above-
ground height (Solana-Arellano et al. 2004). There are 
several LAI seagrasses studied by using various RS data 
(Hedley et al. 2017, 2016). Wicaksono and Muhammad 
Hafizt (2013) mapped LAI seagrass using ASTER VNIR 
and ALOS AVNIR-2 in Indonesia. The two resulting 
images showed similar distribution patterns; the main 
difference was in the level of precision of the LAI map, 
where AVNIR-2 was better than ASTER VNIR.

Seagrass biomass can be used as a barometer 
to assess the effect of changes in seagrass dynamics, 

composition and water brightness. Several studies 
of seagrass biomass used various RS data such as 
WorldView-2, IKONOS and QuickBird-2 (Roelfsema 
et al. 2014), Landsat TM and OLI/TIRS (Misbari & 
Hashim 2016), QuickBird, CASI-2 and Landsat TM 
(Phinn et al. 2008), Landsat ETM+ (Schweizer et al. 
2005) and Sentinel-2A imageries (Erzad et al. 2020). 
Landsat TM/ETM+/OLI/TIRS imageries have been used 
to observe the dynamics of changes in seagrass in Cam 
Ranh Bay, Vietnam from 1996 to 2015, and discovered 
that seagrass had decreased by about 25% (Chen et al. 
2016). Hossain et al. (2019) have used Landsat imagery 
for mapping seagrass distribution changes and assessed 
environmental impacts on coastal reclamation activities. 
León-Pérez et al. (2020) studied the changes in seagrass 
extent from 1950 to 2010 using WorldView-2 data and 
aerial photos based on object-based image analysis 
method. The study showed that seagrass had increased 
by 64%. 

Considering advantages and limitations mentioned 
above, a trade-off between cost, effort and the level of 
information exist. Landsat imagery is favorable due to 
its open data policy, large coverage and its long series 
of images that enable long-term monitoring of seagrass. 
However, limitations exist since low spatial resolution 
of Landsat limits its ability to observe seagrass species. 
The level of seagrass information provided by Landsat 
is low and can only be used at a regional scale. On the 
other hand, VHRS images such as QuickBird are able to 
detect seagrass species with satisfactory detail (Lyons 
et al. 2011); however, it certainly requires higher costs. 
Generally speaking, deciding on the selection of satellite 
imagery must be adjusted to the objectives of mapping 
activities, and level of detail to be achieved, so that it is 
not based solely on low cost of acquisition. To the best 
of our knowledge, up till now, the available satellite 
images are not able to provide complete information 
about all seagrass parameters (presence/absence, cover, 
species, and biomass). Therefore, the integration of 
field-observation, imagery and mapping approaches is 
required (Hossain et al. 2015c).  

AQUATIC PHYSICAL ENVIRONMENT PARAMETERS 
AFFECTING SEAGRASS

The aquatic environmental factors that determine the 
conditions of seagrass growth can be derived from RS 
data. In this case, sea surface temperature and salinity are 
two parameters that influence the distribution of seagrass 
(Chefaoui et al. 2016). In addition, Glasby et al. (2014) 
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and McMahon et al. (2014) suggested other factors that 
determine the distribution of seagrass namely turbidity, 
solar radiation, nutrient and water current. Other studies 
(Foden et al. 2013; Marbà et al. 2013) stated that seagrass 
is a good bio-indicator for detecting climate change and 
ecosystem health. It is because the influence of various 
physical factors of the aquatic environment on the 
distribution of seagrass.

The main cause of seagrass loss is a decrease 
in water transparency caused by increased turbidity 
and nutrient concentration (Duarte 2002). As has 
been mentioned by Carruthers and Walker (1999), 
seagrass growth in tropical waters in Australia was also 
influenced by water turbidity because turbidity reduced 
light availability. Moreover, increased sediment has a 
direct effect on seagrass productivity because sediment 
inhibits and reduces the light intensity required for 
photosynthesis (Ferwerda et al. 2007). As the depth of the 
water column increases, the light intensity decreases. In 
this situation, light is a limiting factor for the distribution 
of seagrass (Hemminga & Duarte 2000). Related to 
suspended sediment, RS images have been used widely to 
derive suspended sediment in shallow water, for instance 
by using Landsat (Veettil & Quang 2018), MODIS (Kumar 
et al. 2016) and MERIS (Ambarwulan et al. 2012, 2011).

Water surface temperature plays an important role in 
seagrass life. Water temperature can be extracted from RS 
data for example by using AVHRR and MODIS (Carlson 
et al. 2018). Several publications have discussed seagrass 
mortality associated with water temperature conditions, 
including in the Mediterranean Sea (Jordà et al. 2012). 
Other environmental factors that also have an impact on 
seagrass life are salinity (Durako & Howarth 2017) and 
water depth (Collier & Waycott 2014).

Mapping of seagrass biophysical parameters using 
RS data is very challenging and uneasy because it is also 
strongly influenced by aquatic physical environment 
parameters around seagrass meadows such as water 
temperature and turbidity. Turbidity caused by the 
presence of CDOM and sediment make it difficult to map 
the biophysical properties of seagrass since solar energy 
that can reach the water column is limited and is blocked 
by sediment particles. The accuracy of results depends 
on approaches that are used for deriving biophysical 
parameters. A semi-analytical/analytical model that 
considers TSM, CDOM and chlorophyll parameters 
increases mapping accuracy compared to the empirical 
model. In addition, spatial and spectral resolutions also 
determine the accuracy of the results.

RS METHODS FOR MAPPING SEAGRASS

The utilization of RS techniques for seagrass mapping 
in shallow and complex water environments faces 
some obstacles due to the presence of atmospheric 
components, variation in water depth, the presence of 
bottom albedo and water column attenuation (Cho et al. 
2012). The treatment for water column attenuation is 
the most challenging and important stage because many 
components, such as scattering and absorption, increase 
with changes of depth, sediment particle concentration, 
chlorophyll and CDOM (Yang et al. 2010). 

Another challenge for the RS of aquatic environments 
is the spectral separation of disturbed seagrass in the 
presence of spectra from other objects (Krause-Jensen et 
al. 2004). Reflectance values recorded by sensors do not 
come solely from seagrass but also from other sources 
such as atmosphere, sun glint and water column. Signals 
from seabed are difficult to distinguish because signals 
received by sensors also arise from objects other than 
seagrass. Hence, these affect beams captured by sensors. 
In this case, seagrass living in a shallow and sandy water 
can easily be distinguished, but those that live in dark 
or muddy environments or mixed with other objects are 
difficult to detect by using RS images; it requires a wide 
dynamic range of colors to distinguish.

Several image processing steps are required for 
seagrass mapping. Image pre-processing consists of 
systematic error correction and image calibration to 
produce consistent and uniform data. In general, there 
are five types of image correction, namely: geometric 
correction (GC), radiometric correction (RC), atmospheric 
correction (AC), and water column correction (WCC). 
According to Giardino et al. (2019) and Pham et al. 
(2019), the AC and WCC are the most important steps 
in image pre-processing. The pre-processing steps 
may differ slightly between studies depending on the 
purpose of mapping, the condition of input image and 
spatial resolution of image used (Schroeder et al. 
2019). Different types of image processing approach 
will determine the accuracy of obtained results. Pu et 
al. (2014) showed that the results of seagrass mapping 
studies from Landsat TM using corrections such as 
for atmosphere, sun glint and water column showed 
increased accuracy (74-80%). 

IMAGE PRE-PROCESSING

Radiometric correction is the initial stage of data 
processing before classification analysis is carried out. 
Koedsin et al. (2016) stated that the purpose of RC is 
to normalize satellite images because of sensor drop 
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factor, variations in the sun-to-earth distance, incidence 
angle, view angle, and data recording time. The RC 
process includes the conversion of digital number (DN) 
to the radiance value (in μW/cm2nmsr) using calibration 
coefficients presented in the image metadata, such as gain 
and offset of each band.

Atmospheric correction is carried out to clarify 
the appearance of objects in the image to make it easier 
in recognizing objects during image interpretation. AC 
techniques include dark pixel subtraction (DOS) from 
Chavez (1988) and Fast Line-of-sight Atmospheric 
Analysis of Spectral Hypercubes (FLAASH). DOS is 
carried out to eliminate atmospheric scattering by fog 
and aerosols, and waves in the spectral signal (Stumpf 
et al. 2003). 

Sun glint is a signal that is emitted from the 
water surface toward the sensor which can cause 
misinterpretation. Kay et al. (2009) differentiated sun 
glint correction (SGC) into two categories: sun glint in 
satellite imagery with a resolution of 100-1000 m, used 
for deep-sea waters; and sun glint in satellite image with 
a resolution of about 10 m for coastal areas. In their study, 
near infrared (NIR) wavelengths were used for sun glint 
correction in coastal water based on the assumption that 
any NIR signals that exist after atmospheric correction 
must arise from sun glint (Hedley et al. 2005; Lyzenga 
et al. 2006). Some examples of SGC applied for high-
resolution satellite images are methods proposed by 
Hedley et al. (2005), Kutser et al. (2009), and Lyzenga et 
al. (2006). Further discussion of sun glint can be found in 
Kay et al. (2009). Anggoro et al. (2016) applied SGC to 
improve the accuracy of benthic maps in the Thousand 
Islands from WorldView-2 imagery. The resulting benthic 
maps with and without SGC showed differences in 
accuracy values of 60 and 53%, respectively. Several 
publications related to seagrass mapping by using RS 
technology including SGC are presented in Table 1.

WCC is carried out to improve image quality by 
reducing the influence of water column (Lyzenga 1981). 
In principle, passive optical sensors record surface 
reflectance of the atmosphere. Various processes 
have influenced to the Top of Atmosphere (TOA) 
reflectance such as absorption and scattering by 
atmospheric components, Fresnel reflection, water body 
backscattering, and bottom reflection (Zoffoli et al. 
2014). Lyzenga (1978) outlined two basic approaches 
used for WCC, namely empirical RT and analytical 
RT. The empirical approach is a simple method using 
information contained in the image, while analytical 
method is a sophisticated and more complex method 
because it requires a detailed information about 
bathymetry, water attenuation and spectral library 
of objects. There are many algorithms for WCC that 

differ in how they estimate the partial contribution 
to the surface signal. They are divided into three 
approaches: the band combination algorithm, model-
based algebraic algorithms and optimization/matching 
algorithms (Zoffoli et al. 2014). Lyzenga’s method 
(Lyzenga 1981, 1978) is one of the most popular band 
combination algorithms (Benfield et al. 2007) and in 
most cases show an increase accuracy (Mumby et al. 
1998). The algorithm of Sagawa et al. (2010) was based 
on bottom reflectance index (BRI), while Conger et al. 
(2006) proposes principal component analysis (PCA). 
Model-based algebraic algorithms include those of Lee 
et al. (2005), Maritorena et al. (1994), and Mumby et al. 
(1998), which require spectral measurement of different 
water body parameters (e.g. absorption and scattering 
coefficients) to determine the behavior of light in water 
column. Further discussion of water column can be 
found in Zoffoli et al. (2014). Many research on seagrass 
uses various sensors for WCC resulting in different levels 
of accuracy. Corrections based on RT models have 
been used by Tamondong et al. (2013) on WorldView-2 
to produce a seagrass map with an overall accuracy of 
88.3%. The PCA correction of WorldView-2 was carried 
out by Wicaksono (2016). Hafizt et al. (2017) mapped 
benthic habitats on Lintea Island, Indonesia using 
Sentinel-2 using two different WCC methods. In this 
case, benthic habitat distribution was produced by using 
a Relative Water Depth Index (RWDI) and obtained an 
overall accuracy of 83%. Meanwhile, when using Depth 
Invariant Index (DII) based on Lyzenga (1981), the overall 
accuracy was 23%. Manessa et al. (2014) compared 
two WCC method from Lyzenga for benthic habitat 
mapping in Lombok, Indonesia using WorldView-2 
and found that modified Lyzenga method (Lyzenga et 
al. 2006) performed better than the original Lyzenga 
method (Lyzenga 1981).

IMAGE CLASSIFICATION

Image classification is generally performed on corrected 
images and divided into two categories: pixel-based and 
object-based image classification (OBIA). Pham et al. 
(2019) stated that image classification for seagrass can be 
divided into five types: unsupervised learning, supervised 
learning, advanced learning, OBIA and sub-pixels. 
The unsupervised and supervised methods are type 
of pixel-based classification techniques. In this case, 
pixels are put into classes that show similarities between 
them. The unsupervised method consists of iterative 
self-organizing data analysis (ISODATA) and methods 
based on spectral indices, such as the normalized 
difference vegetation index (NDVI) from Barillé et al. 
(2010). Meanwhile, the supervised classifications for 
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e.g. maximum likelihood classifier/MLC (Koedsin et 
al. 2016), decision trees (Benfield et al. 2007), use data 
provided by the user to train the algorithm to classify 
the data into the defined classes. This method performed 
better when there are good-quality field data (Schroeder et 
al. 2019). Furthermore, other available methods include 
PCA (Pasqualini et al. 2005), on-screen digitizing, and 
linear spectral unmixing (Uhrin & Townsend 2016).

Seagrass classification techniques from RS data 
range from fully manual skill-based approach to 
supervised and unsupervised machine learning. Some 
of the well-known machine-learning (advance learning) 
approaches are support vector machine (SVM), 
convolutional neural network (Islam et al. 2019; Perez 
et al. 2018), k-nearest neighbors and random forest. 
Li and Xiao (2011) studied the classification method 
for seagrass using SVM, naïve Bayesian, and decision 
tree. The results showed that the overall accuracy of the 
Bayesian method was the highest (86.11%), and the 
lowest used SVM (85.90%). SVM is a very powerful 
machine-learning technique for image classification, 
which creates a boundary called a hyperplane to 
separate and classify each pixel into a class (Huang et 
al. 2002). Marcello et al. (2015) studied MLC, SVM, 
Mahalanobis distance (MH) and spectral angle mapping 

(SAM) for mapping seagrass on Gran Canari Island 
from WorldView-2 and found that SVM provided the 
best accuracy.

OBIA is a digital classification technique that 
classifies objects by combining a homogeneous set of 
pixels into object-based sets through a segmentation 
process. OBIA is superior to traditional pixel models 
based on HSR data classification (Qian et al. 2015). Its 
advantage compared to pixel-based methods is that it can 
overcome the problem of salt-and-pepper effects caused 
by high local spatial heterogeneity between pixels 
(Lillesand et al. 2015). Baumstark et al. (2016) mapped 
seagrass distribution from WorldView-2 using OBIA and 
obtained an overall accuracy of 78%. Roelfsema et al. 
(2014) discussed OBIA and pixel-based classification 
methods in mapping seagrass species, percentage 
cover and above-ground biomass from field data, 
WorldView-2, IKONOS-2, and QuickBird-2. The OBIA 
method obtained an overall accuracy of 77% and the 
pixel-based method 35% in seagrass species mapping. 
In percentage cover mapping, the OBIA accuracy was 
57% and the pixel-based was 31%. The application of RS 
in seagrass mapping and the related image processing 
techniques used are presented in Table 1.

TABLE 1. List of publications on RS technology for seagrass 

Reference Data sources Location Scale Pre-
Processing Class. Method Output

Adi (2015) WorldView-2

Australia 

Specific AC, WCC Regression 
analysis   

LAI, biomass

Lyons et al. (2011) QuickBird-2 Specific  AC, WCC MLC percentage cover. 
seagrass species 
seagrass changes 

Lyons et al. (2012) Landsat MSS, 

TM, ETM+
Local RC, AC OBIA seagrass cover

Phinn et al. (2008) QuickBird
Landsat TM5 
CASI-2

Specific RC, AC Supervised seagrass cover, 
composition and 
biomass

Topouzelis et al. (2018) Landsat 8 OLI/
TIRS Greece

Local RC, AC OBIA seagrass distribution 

Traganos et al. (2017) PlanetScope Specific WCC SVM seagrass distribution

Agus et al. (2018) SPOT-7 Local AC, WCC MLH seagrass distribution

Amran (2010) QuickBird Specific AC, SGC, 
WCC

MLC seagrass coverage

Amri at al. (2010) QuickBird Specific RC, WCC MLC substrate type

Amri at al. (2010) WorldView-2 Specific RC, AC OBIA substrate type

Anggraeni et al. (2019) Landsat 8 OLI/
TIRS

Local RC, AC, WCC MLC seagrass beds 
distribution

Astuty & Wicaksono 
(2019)

PlanetScope Specific WCC MLC, RF, & 
SVM

species composition, 
biomass carbon stock
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Ayustina et al. (2018) Landsat 8 OLI/
TIRS

Local RC, WCC MLC shallow water depth

Aziizah et al. (2016) WorldView-2 Indonesia Specific RC, AC, WCC SAM, SVM seagrass species
Daud et al. (2019) Sentinel-2 

Landsat 8 OLI/
TIRS

Local RC, AC, WCC MLC seagrass distribution 
oceanographic 
condition

Fauzan et al. (2017) Sentinel-2 Local RC, AC, WCC MLC percent cover
Giofandi at al. (2020) Sentinel-2 Local RC, AC, WCC Supervised seagrass beds, blue 

carbons
Hamsah et al. (2019) SPOT-6 Local RC, AC, WCC Supervised percentage coverage
Ilyas et al. (2020) SPOT-7 Local AC, WCC OBIA, SVM, 

Bayes, DT, 
and K-NN

benthic habitat

Kurniawan et al. (2014) GeoEye-1 Specific RC, WCC Visual 
interpretation

seagrass distribution

Lubis et al. (2017) Landsat 8 OLI/
TIRS

Local RC, WCC Supervised seagrass distribution, 
temperature and DO

Manuputty et al. (2017) WorldView-2 Specific  RC, AC, WCC SVM seagrass cover
Nurdin et al. (2014) Landsat MSS, 

Landsat TM5, 
Landsat 7 ETM+, 
Landsat 8 OLI/
TIRS

Local RC ISOCLASS seagrass changes

Patty (2016) Landsat 8 OLI/
TIRS

Local RC Visual 
interpretation

seagrass condition. 
percent cover
seagrass species

Purnawan et al. (2016) Landsat 8 OLI/
TIRS

Local WCC Unsupervised seagrass distribution

Semedi et al. (2019) Sentinel-2 Local RC, AC, Supervised seagrass cover, 
oceanography 
parameters

Setiawan et al. (2012) ALOS AVNIR-2 Regional RC, AC, WCC Unsupervised seagrass changes
Setyawan et al. (2014) WorldView-2 Specific RC, SGC Unsupervised benthic habitat
Sari and Lubis (2017) Landsat 8 OLI/

TIRS
Local RC, WCC Supervised seagrass cover

Taufikurrahman et al. 
(2017)

Landsat 8 OLI/
TIRS

Local RC, AC Unsupervised seagrass cover

Thalib et al. (2019) Sentinel-2 Local RC, AC, SGC MLC seagrass distribution
Wicaksono (2015) Worldview-2 Specific SGC, WCC Empirical 

model, 
Regression

 LAI, carbon stock, 
standing crop 
above ground

Wicaksono and Lazuardi 
(2018)

PlanetScope Specific AC, SGC MLC, SVM, 
and CTA

benthic habitat & 
seagrass species

Yusuf and Indrawan 
(2019)

QuickBird Specific RC Unsupervised seagrass cover

Misbari and Hashim 
(2016)

Landsat TM5  
Landsat 8 OLI/
TIRS

Local RC, ACC< 
SGC, WCC

MLC

Linear 
regression

seagrass distribution
biomas changes

Hossain et al. (2015) Landsat 8 OLI/
TIRS

Landsat 7 ETM+
Landsat TM5

Local RC, AC, NDVI seagrass changes

Hashim et al. (2014) Landsat 8 OLI/
TIRS

Malaysia Local GC, AC, SGC BRI method seagrass distribution 
biomass changes
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Sani and Hashim (2020) Landsat 8 OLI/
TIRS

Local GC, AC, RC, 
SGC

BRI, MLC seagrass distribution, 
seagrass biomass

Hossain et al. (2015) Landsat TM5
Landsat 7 ETM+ 
Landsat 8 OLI/
TIRS

Local - Manual 
Digitizing

seagrass
detection and 
distribution

Redondo et al. (2017) Landsat

Philippine

Local RC, AC Supervised seagrass distribution, 
seagrass species

Tamondong et al. (2013) PlanetScope 
Sentinel 2A

Local RC, AC, WCC MLC
SVM

seagrass percent 
cover and LAI

Koedsin et al. (2016) WorldView-2

Thailand

Specific RC, AC, WCC MLC seagrass species, 
seagrass cover, and 
biomass

Chayhard et al. (2018) WorldView-2
GeoEye-1
Aerial photo by 
UAV

Specific RC, WCC MLC Seagrass distribution, 
seagrass species

Kakuta et al.,  (2016) Landsat 8 OLI/
TIRS

Local WCC ISODATA,

decision tree
decision tree

seagrass species

Komatsu et al. (2012) ALOS-AVNIR Local RC, AC, WCC OBIA, Pixel 
base

seagrass species

Yamakita et al. (2019) QuickBird
Aerialphoto

Local WCC Supervised seagrass species

Duffy et al. (2017) Drone Specific

RC, AC, SGC, 
WCC

Unsupervised, 
OBIA

seagrass distribution

Baumstark et al. (2016) WorldView-2 Specific OBIA benthic cover type
Carlson et al. (2018) MODIS AVHRR, 

Landsat 8 OLI/
TIRS

USA Regional Empirical SST, salinity and 
seagrass cover

Dierssen et al. (2015) PRISM Regional AC, SGC NDVI seagrass species
Oguslu et al. (2018) WorldView-2 Specific AC k-Nearest 

Neighbors
seagrass distribution

Pu et al. Landsat TM5
EO-1 ALI 

Hyperion (HYP)

Local RC, AC, WCC ISODATA, 
Multiple 
regression 
models

percent cover, percent 
SAV and LAI

Pu & Bell (2017) IKONOS

Landsat TM5
Specific RC, AC, WCC MLC & SVM seagrass classification

Chen et al. (2016) Landsat TM, 
ETM+, OLI/TIRS

Luong et al. (2012) ALOS-AVNIR
Landsat TM
SPOT 5

Thu et al. (2012) Landsat, SPOT

and ALOS 
AVNIR-2.

Vietnam Local RC, AC, Bio-
optic model

Supervised
Unsupervised

Khanh Ni et al. (2020) Sentinel-2 
Landsat 8 OLI/
TIRS

V1 imagery

Local RC, AC, WCC MLC

Nguyen et al. (2021) Landsat 8 OLI/
TIRS Sentinel-2B

Local RC, AC, WCC Supervised
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CONCLUDING REMARKS

The Tropical Indo-Pacific is the richest seagrass 
biodiversity in the world having 24 species out of 
60-seagrass species seen around the world. The seagrass 
areas worldwide decrease due to human activity and 
climate change. Seagrass mapping and monitoring are 
essential for the management and conservation of 
seagrass ecosystems. From literature review that has 
been conducted, we concluded that RS application is 
likely more effective and efficient for seagrass mapping 
than field measurement. Because RS imagery offers a 
multipurpose and accurate technique for mapping seagrass 
with varying degrees of detail. Seagrass ecosystem 
information can be detected by RS through biophysical 
properties of the seagrass, including distribution area, 
species composition, biomass, LAI, and changes in the 
seagrass ecosystem. Large number of environmental 
parameters that affect the ecological health of seagrass 
can be monitored using RS data including suspended 
sediment, sea temperature, salinity, and light penetration. 
Of the biophysical properties of the seagrass, there 
are not many publications concerning LAI, biomass or 
carbon stock. Likewise, only a few studies are related 
to the physical parameters of the marine environment 
of seagrass. There are opportunities for researchers to 
examine these topics concerning the tropical equatorial 
ecosystem by using various types of sensors and various 
image processing methods.

A variety of passive and active sensing data are used 
to analyze seagrass parameters, including underwater 
and aerial photography, multispectral and hyperspectral 
techniques, LiDAR, radar, sonar and data from UAVs. 
Passive sensor satellite imagery is more widely used 
because active sensors are relatively more expensive, 
but they can be used in turbid and deep waters. Image 
fusion techniques combining passive and active 
sensors provide the opportunity to map seagrass more 
accurately. Based on the sensor type, MSR imagery 
such as Landsat is used for global seagrass mapping. 
Sentinel-2, with spatial resolution of 10 m is able to map 
seagrass distribution. Both images are easy to obtain, free 
of charge, large area coverage and are multi-temporal. The 
advantage of Landsat is that it has a long archive data, 
so it can provide changes in seagrass over a long period. 
These two imaging techniques are very suitable to be 
used to map the distribution of seagrass in a systematic 
manner. VHSRs such as IKONOS, GeoEye, WorldView-2 
and QuickBird are suitable for a more detailed mapping, 
such as of seagrass species. Each image has advantages 
and disadvantages depending on the objective and the 
level of the mapping activities. The disadvantages of 
VHSR technique are high price, narrow coverage and 

limited temporal resolution.
Several image pre-processing techniques to improve 

the accuracy of seagrass classification have been 
discussed in this paper. In some cases, the classification 
accuracy can be improved by using AC, WCC, and SGC 
approaches. Dark pixel subtraction and Lyzenga’s DII 
algorithm are techniques of AC and WCC that are 
widely used by many researchers. Atmospheric correction 
is important for multi-temporal analysis to take into 
account variations in the atmosphere. There are many 
WCC methods available, however, only a few have 
been tested for research in the tropical region which 
generally use the band combination algorithm model. 
Meanwhile, model-based algebraic algorithms such 
as those of Lee et al. (2005), Maritorena et al. (1994), 
and Mumby et al. (1998) still need to be explored. 
The model is challenging because it requires spectral 
measurements of various water components. SGC needs 
to be performed on HSR and VHSR images for seagrass 
mapping in order to obtain good accuracy, because these 
images are generally designed for the detection of objects 
on land, so they do not anticipate the effect of sun glint. 
There are several SGC methods that have been used by 
researcher, such as those of Hedley et al. (2005) and 
Lyzenga et al. (2006), however method from Kutser et 
al. (2009) is rarely used. Furthermore, various image 
classification methods have been used for seagrass 
mapping, but the current trend requires a classification 
method that is fast, automatic, that can include a large 
amount of data and that is highly accurate. Machine-
learning techniques such as neural networks are likely 
able to meet these needs.

Future research for underwater seagrass mapping 
may adopt more automatic data collection, detection and 
classification. The research can be focused on: Using HSR 
and VHSR RS images to map the biophysical properties 
of seagrass using various pre-processing and image 
classification models (machine learning, linear spectral 
unmixing, OBIA); using semi-analytical and analytical 
approaches to map seagrass using optical physical data 
of seagrass and water parameters; mapping the physical 
environmental parameters of the water that affect 
seagrass using satellite imagery and in-situ observation 
by using empirical and semi-analytical approaches; 
and mapping and monitoring the seagrass dynamic 
from Landsat, Sentinel-2A and SPOT6/7 to obtain more 
complete data on seagrass in Indonesia.
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